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Abstract

Subway shuffle is an addicting puzzle game created by Bob Hearn. It is
played on a graph with colored edges that represent subway lines; colored
tokens that represent subway cars are placed on the nodes of the graph.
A token can be moved from its current node to an empty one, but only if
the two nodes are connected with an edge of the same color of the token.
The aim of the game is to move a special token to its final target position.
We prove that deciding if the game has a solution is PSPACE—complete
even when the game graph is planar.

1 Introduction

In the last years the study of the complexity of puzzles and (video)games has
gained much attention (see for example the survey [3]). Most games can be
generalized to arbitrary instance size and transformed to decision problems in
which the question is usually: “Given an instance of size m x n of the game X,
does it have a solution?”. Tt turns out that most static puzzles (sudoku, kakuro,
binary puzzle, light up, ...) are NP—complete and that most dynamic puzzles
(sokoban, rush hour, atomix, ...) are PSPACE—complete.

One of the puzzles for which the complexity was still unknown is Subway
Shuffle (Figure |1)), an addicting puzzle game created by Bob Hearn.

Figure 1: Level 14 of Subway Shuffle.

It is played on a graph with colored edges that represent subway lines; colored
tokens that represent subway cars are placed on the nodes of the graph. A token
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can be moved from its current node to an empty one, but only if the two nodes
are connected with an edge of the same color of the token. The aim of the game
is to move a special token to its final target position.

We proved, as conjectured in [2], that its rules are rich enough to be PSPACE-
complete. The proof uses the framework of the nondeterministic constraint logic
model of computation (2], [1]): given a planar constraint graph in normal form,
it is PSPACE-complete to find a sequence of edge reversals (moves) that keep
the constraint graph valid, ending in the reversal of a special edge e*.

We build an equivalent subway shuffle board with gadgets that simulates
the behaviour of the edges and vertices of the constraint graph and that has a
solution (i.e. a sequence of moves that shift the special token to its final target
position) if and only if there is a sequence of moves that reverses e*.

2 Subway Shuffle decision problem

We can generalize the Subway Shuffle game to boards of arbitrary size and
formulate it as a decision problem in this way:

Definition 2.1 (SUBWAY SHUFFLE problem).

Input: Given a graph G = (V, E), in which every edge e is colored with color
C(e) € [1..c], and m colored tokens Ty, T5, ..., Ty, placed on m distinct nodes of
V and colored with color C(T;) € [1..c]; Ty = M is the special token, and one
of the nodes U € V is the target node. A legal move is a pair (T3, (u;, u;)) that
represents the shift of token 7T; placed on node w; on an empty adjacent node
u; along an edge e = (u;,u;) € E of the same color, i.e. C(T;) = C(e);
Output: A sequence of legal moves, that shift the special token M to the target
node U.

In our construction we use four colors (¢ = 4).

3 Nondeterministic Constraint Logic (NCL)

A constraint graph [2] is a directed graph G in which edges have a nonnega-
tive integer weight and the nodes have a nonnegative integer minimum in—flow
constraint. A walid configuration of the graph is an orientation of the edges
such that, for each node, the total weight of its incoming edges is at least the
minimum in—flow constraint. A move from one valid configuration to another is
the reversal of a single edge such that the in—flow constraints remain satisfied.
It is PSPACE—complete to decide if, given a valid initial configuration, there
exists a sequence of moves that reverses a specified edge; this sequence can be
viewed as a nondeterministic computation.

The problem remains PSPACE—-complete even if the graph is in normal form:
the weights are 1 or 2, all in—flow constraints are 2 and all vertices have degree
3. In [I] it is shown that two types of vertices are enough to simulate all NCL
graphs in normal form: AND and OR vertices. The AND vertex has two (red)
edges of weight 1, and a (blue) edge of weight 2 (Figure ); the OR vertex has
three (blue) edges of weight 2 (Figure [2b).

We will use another type of vertex that is called LATCH and has three
blue edges, one input and two outputs (see Figure ) When the input edge is



directed outward at most one output edge can be directed outward (the edge
that can be directed outward represents an internal 0-1 state S); when the
input edge is directed inward then both outputs can be directed outward. As
a result, the output edges can be reversed only when the input edge is directed
inward. An example of status change from S = 0 to S = 1 is shown in Figure 2l
(S = * means that both states are active).

Using an AND and a LATCH we can build an OR, like shown in Figure 2g;
the only thing to notice is the junction between a blue edge of weight 2 and a red
edge of weight 1 that can be realized using a vertex of degree 2 with an inflow
constraint of 1. Though this type of vertex can also be converted in normal
form as shown in [2], its behavior is implicitly realized by the way in which we
connect the gadgets in subway shuffle, so we ignore it in our OR construction.

(@) (b) (©

LATCH status change

(d)

OR simulation with 1 AND and 2 LATCH

Figure 2: (a) AND, (b) OR and (c) LATCH vertices; (d) LATCH status change
example; (e) OR simulation with an AND and two LATCH.

So given a planar constraint graph G we can build an equivalent constraint
graph G’ in normal form that contains only AND and LATCH vertices. The
edge-reversal problem is PSPACE—complete even for planar graphs [2]; so we
can immediately derive the following:

Corollary 3.1. Given a planar constraint graph G in normal form that contains
only AND and LATCH wvertices, and given an edge e* of G; it is PSPACE-
complete to decide if there exists a sequence of moves that reverses e*.



4 Gadgets and reduction

Given a planar constraint graph in normal form with AND and LATCH vertices,
we construct an instance of Subway Shuffle that has a solution if and only if the
original constraint graph has a solution.

4.1 Reduction overview

In the graphs of the constructed instances of subway shuffle, all except one
node is occupied by a token, so there is a single empty node at all times, which
we refer to as the empty token. A solution to a constructed instance is then
uniquely represented by the path traced by the empty token. Each (nonempty)
token has one of four colors: yellow, green, blue or purple.

We use two types of subway shuffle gadgets:

o Vertex gadgets (AND and LATCH) that simulate the behavior of the
vertices of the constraint graph;

e EDGE gadgets that simulate the behavior of the edges of the constraint
graph (we will use the uppercase letters to distinguish an EDGE gadget
from a single colored subway shuffle edge).

Every gadget is planar and has an entry node E. The gadgets are arranged
like in the original constraint graph and there is a connection track made of
purple edges (do not confuse them with EDGE gadgets) that connect together
the entry nodes of every gadget. EDGE gadgets can be crossed by the purple
edges of the connection track through a central cross node R, allowing the empty
token to move from one side to the other; in this way it is possible to build the
connection track without breaking the planarity of the resulting graph.

Initially every gadget is in a wvalid configuration, i.e. the tokens on its nodes
are consistent with the logic of the corresponding edge or vertex of the constraint
graph.

The empty token is placed on a node of the connection track; from there it
can reach the entry node of every gadget H, enter it, and eventually change
its configuration from the current one to another valid one. The empty token
can leave the gadget only returning to its entry point. We will see that in some
cases the empty token can move to an adjacent gadget H’ instead of leaving
through the entry point of H. In such case, the empty token cannot leave H’
except through H, and this cannot change the configuration of H’.

Figure[3]summarizes the structure of the subway shuffle board corresponding
to the simple constraint graph with one AND and two LATCH that simulate
the OR behavior.

4.2 EDGE gadget

The EDGE gadget is a straight path of blue edges with two endpoint nodes A
and B. Auxiliary connections allow a blue token positioned on one endpoint
to be shifted on the other endpoint. It is used to connect two Vertex gadgets
together; in particular the endpoints are shared with the Vertex gadgets. The
only nodes that will be connected to the remaining part of the board are the
two endpoints A, B, the entry node E and the central cross node R of the blue
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Figure 3: A simple constraint graph (a); and the skeleton structure of the
corresponding subway shuffle board (b): the connection track made with purple
edges allows the empty token to reach the entry node of each subway shuffle
gadget (EDGE, AND, LATCH) and change its configuration.

path, which is connected to E with a purple edge and is part of the connection
track and can be used by the empty token to cross the gadget. The EDGE
gadget can be in three states:

e Unlocked: a blue token is present along the blue path, and the empty
token, starting from the entry node E, can shift it from one endpoint to
another (see Figure [h,b). As we will see, an EDGE is in the unlocked
state if and only if the corresponding edge of the constraint graph can be
reversed.

e Locked A: the blue token is locked in the vertex gadget connected to the
endpoint A (see Figure [lt). As we will see, an EDGE is the locked A
state if and only if the corresponding edge of constraint graph is directed
towards the vertex connected to the endpoint A and cannot be reversed.

e Locked B: the blue token is locked in the vertex gadget connected to the
endpoint B (see Figure [4d). As we will see, an EDGE is the locked B
state if and only if the corresponding edge of constraint graph is directed
towards the vertex connected to the endpoint B and cannot be reversed.
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Figure 4: An EDGE gadget and its possible states: Unlocked (a,b), Locked A
(¢), Locked B (d).

The shift sequence to move the blue token from endpoint A to B is shown
in Figure |5} the sequence can be reversed to move the blue token from B to A.
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Figure 5: The move sequence to move the blue token from one endpoint to the
other in an EDGE gadget.

4.3 AND gadget

The AND gadget, shown in Figure [6h, is connected to three EDGE gadgets
H,,Hp, He through nodes A, B and C (which are also the endpoints of the
EDGEs). Once both H4 and Hpg edges are pointing inward, i.e. there is a blue
token on nodes A and B, the empty token, from the entry node E, can make a
counter—clockwise loop, shift one of the blue tokens on node C so that the edge
H¢ can be later be reversed outward, and finally reach the entry node again

(Figure [6b).

4.4 LATCH gadget

The LATCH gadget, shown in Figure [7h, is connected to three EDGE gadgets
H,,Hp, Ho through nodes A, B and C (which are also the endpoints of the
EDGESs). Node B contains a blue token so edge Hp can be directed outward.
Once Hy is directed inward, i.e. there is a blue token on node A, the empty
token, from the entry node E can pop the blue token and move it to node C.
At this point both Hg and H¢ can be directed outward. In order to make
H 4 point outward again, a blue token must be picked from node B (or C') and
moved back to node A (Figure [7b).

4.5 FINAL gadget

The FINAL gadget, shown in Figure [8p, is used to simulate the reversal of
the target edge e* of the constraint graph. It is simply a circuit linked to
an EDGE gadget H4 through the endpoint A (so the FINAL gadget and the
attached EDGE gadget H,4 represent together the edge e* of the original con-
straint graph), and it contains the special token M. If H, is directed inward,
i.e. a blue token is placed on node A, then the empty token, after reaching the
entry node E can make a counter—clockwise loop placing the token M on node
B; then it can leave the gadget and reach B from outside, placing M on its
target node U (Figure [3p).
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Figure 6: The AND gadget (a). How it is connected to the EDGE gadgets and
the valid configurations that simulate the corresponding NCL vertex behavior
(b). The sequence of moves that changes its configuration (c).



Figure 7: The LATCH gadget (a). How it is connected to the EDGE gadgets and
the valid configurations that simulate the corresponding NCL vertex behavior
(b). The sequence of moves that changes its configuration (c).
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Figure 8: The FINAL gadget (a). How it is connected to the EDGE gadget in
order to simulate the behavior of e* (b). The sequence of moves that solves the
puzzle leading the special token M to the target node U.

Note that in the figure, for better clarity, we used the red color for the M
token and the path to U, but we can use the green color as well, without altering
the gadget behavior.

4.6 Combining the gadgets

Like shown in Figure [2p we can combine the gadgets above to build a Subway
Shuffle gadget that behaves like an NCL OR vertex (see Figure @; note that
edge weights are “embedded” in the AND and LATCH gadgets, so an EDGE
gadget acts like an implicit degree 2 junction node that can connect a blue edge
of weight 2 to a red edge of weight 1. Furthermore we can also arbitrarily extend
the length of the EDGE gadgets and rearrange their nodes to make planar turns,
without changing their behavior, like shown in Figure{I0]

5 PSPACE—-completeness

We prove that the behavior of the gadgets described in the previous section are
consistent with the corresponding elements of the constraint graph; in particular
the direction of an EDGE gadget can be reversed if and only if the corresponding
edge in the constraint graph can be reversed.

It is important to notice that exactly one blue token is initially placed in
each EDGE gadget, in one of the three states: unlocked, locked A, or locked
B according to the corresponding constraint edge status, and by construction
there is no way for the blue token to move from one edge gadget to another (i.e.
a blue token cannot cross the AND and LATCH gadgets).



Figure 9: The simulation of an OR vertex using an AND and two LATCH.
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Figure 10: The EDGE gadgets can be arbitrarily extended and arranged to
make planar turns.
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5.1 Gadget behavior

We first analyze the behavior of the AND and LATCH gadgets when the empty
token enters them through the entry node E and the gadget is in a consistent
configuration.

The consistent configurations of the AND gadget are shown in figure [11] (for
simplicity we represent two possible token colors with two overlapped tokens).

(A1) (A2) (A3) (A4) (A5) (AB)

Figure 11: The consistent configurations of the AND gadget.

Notice that the only configuration change that can be made by the empty
token on E is from A4 to A5 making a counter—clockwise loop or from A5 to
A4 making a clockwise loop (see Figure [6f for the detailed sequence)). In both
cases the neighbors of nodes A, B, C' (marked in the picture with a black arrow)
cannot contain another blue token because every EDGE gadget contains exactly
one blue token, this prevents the empty token to exit the gadget from nodes
A, B or C while performing the loop. So, if the empty token enters the AND
gadget in a consistent configuration through the entry point E, we have the
following cases:

e it leaves the gadget through E without changing its configuration;

e if there are two blue tokens on A and B (A4) it can lock them, perform
a counter—clockwise loop unlocking the blue token on C, and finally exit
the gadget through E (A5);

e conversely, if the two blue tokens on A and B are locked and there is a
blue token on C' (A5) then it can make a clockwise loop, locking the token
on C' and releasing the two tokens on A and B, and finally exit the gadget
through F (A4).

The consistent configurations of the LATCH gadget are shown in figure [12].

The only configuration changes that can be made by the empty token on
FE is from L3 to L4 or from L5 to L6 making a counter—clockwise loop on
the right half-triangle, from L6 to L10 or from L8 to L11 making a counter—
clockwise loop on the left half-triangle; and it can obviously reverse the change
(see Figure mc for the detailed sequence). In all cases there is only a blue token
per EDGE gadget, so it cannot escape from the LATCH. So, if the empty token
enters the LATCH gadget in a consistent configuration through the entry point
E, we have the following cases:

e it leaves the gadget through E without changing its configuration;

e if there is a blue token on A and C is locked (L3, L5) it can lock the token
on A and unlock the blue token on C (L4, L6);

11



L7) (L8) (L9) (L10) (L11) (L12)

Figure 12: The consistent configurations of the LATCH gadget.

e if there is a blue token on A and B is locked (L10, L11) it can lock the
token on A and unlock the blue token on B (L6, L8);

e conversely, if A is locked and there is a blue token on B (or C), it can lock
the token on B (or C) and unlock the blue token on A.

Finally we analyze the behavior of the EDGE gadget. Again we suppose that
both the EDGE gadgets and the Vertex gadgets are in a consistent configuration
and that the empty token is placed on the entry node E of an EDGE gadget.

We analyze what can happen on endpoint A (the other is symmetric). If
the edge is in the Locked A state, then the endpoint A contains a green token
(see Figure ), and the empty token cannot leave the EDGE gadget through
A. If the EDGE is unlocked, (see Figure fb) then the empty token can reach
the endpoint A (directly if it contains a yellow token or after moving down
the blue token if it contains a blue token); at this point the empty token can
enter the attached AND (or LATCH) gadget X; but we are assuming that the
gadget X is in a consistent configuration, so the empty token can neither ()
leave X and jump to another EDGE (easily verified by case analysis on the valid
configurations A1 — A6, L1 — L12), nor (ii) reach the entry node of X, because
the purple token adjacent to F cannot be shifted. So, if the empty token enters
the EDGE gadget in a consistent configuration through the entry point E, we
have the following cases:

e it leaves the gadget through E without changing its configuration;
e it crosses the gadget through R without changing its configuration;

e if the EDGE is unlocked, it can move the blue token up and down accord-
ing to the sequence shown in Figure [f]

Note that the blue token can be left in the middle of the EDGE gadget (and
not necessarily on one of its endpoint), but this simply imply that when entering
one of the attached gadget the empty token will not be able to lock the EDGE
(and change the attached gadget configuration if it requires a blue token on the
endpoint).

So we can state the following lemma:
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Lemma 5.1. The behavior of the EDGE, AND and LATCH gadgets are consis-
tent with the behavior of the edges and vertices of the corresponding constraint
graph.

Proof. As seen above the EDGE attached to node C of an AND gadget can
be directed outward (unlocked) if and only if the EDGEs attached to A and B
are directed inward (locked). The EDGEs attached to nodes B, C of a LATCH
gadget can be both directed outward (unlocked) only when the EDGE attached
to A is pointing inward (locked); one of the EDGEs B, C must be directed
inward (locked) before being able to point A outward (unlock). O

5.2 Main result

Theorem 5.2. SUBWAY SHUFFLE is PSPACE-complete.

Proof. Given a planar constraint graph in normal form with only AND and
LATCH vertices, we can build in polynomial time an equivalent Subway Shuffle
board using the EDGE, AND, LATCH gadgets. The target edge e* that must
be reversed in the constraint graph is simulated by the FINAL gadget. We have
seen that the empty token can freely traverse an EDGE gadget whatever its
current configuration (direction) is from the entry node E through the cross
node R, so we can build a purple track that connects every entry point of every
subway shuffle gadget. As we have seen, by Lemma [5.1] the behavior of the
gadgets is consistent with the logic of the corresponding constraint edges and
vertices: the empty token can enter a gadget only through its entry node, and
can leave it only through the same node leaving the gadget in a consistent
configuration, furthermore it cannot change the configuration of the adjacent
gadgets; so a sequence of moves that reverses e* in the constraint graph exists,
if and only if there is a sequence of moves in the subway shuffle board that leads
the target token M to its final node U. It is easy to see that the solution can be
found in polynomial space — which is equal to nondeterministic polynomial space
(PSPACE = NPSPACE by Savitch’s theorem [4]) — using a simple recursive
program that nondeterministically picks the next move and verifies if the special
token has reached the target node. O

6 Conclusion and open problems

We proved that the rules of Subway Shuffle are sufficiently complex to make
solving instances PSPACE—complete, as conjectured by Hearn and Demaine in
[2]. Using different gadgets, it may be possible to use less than four colors in a
reduction for Subway Shuffle, this might lead to reductions for related games.
An example of a related game whose complexity remains open is a variant
of Rush Hour in which each block (car) has unitary size 1x1 and can move
either horizontally or vertically. In particular, this variant of Rush Hour can
be modeled as a version of Subway Shuffle with only two colors (representing
horizontal and vertical cars and edges) and a more restricted class of graphs.
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