
The Complexity of Crazy Frog Puzzle and

Permutation Reconstruction from Differences

Marzio De Biasi
marziodebiasi [at] gmail [dot] com

December 19, 2013
2013-12-19 v0.02 ... more details
2013-07-29 v0.01 “... sketch of a proof”

Abstract

We prove that the problem of reconstructing a permutation π1, . . . , πn

of the integers [1 . . . n] given the absolute differences |πi+1 − πi|, i =
1, . . . , n − 1 is NP–complete. As an intermediate step we first prove the
NP–completeness of the decision version of a new puzzle game that we call
Crazy Frog Puzzle. The permutation reconstruction problem is one of the
simplest arithmetic problems that has been proved to be computationally
intractable.

1 Introduction

We introduce a new puzzle game, the Crazy Frog Puzzle with the following
rules: a frog is placed on a square grid board; some cells of the grid are blocked,
some are empty. The frog must follow a given sequence of horizontal, vertical
or diagonal jumps of varying length; at every jump the frog can only decide to
follow the given direction or jump in the opposite direction. For example, when
facing an horizontal jump of length two, the frog placed on cell (x, y) can jump
left on cell (x − 2, y) or right on cell (x + 2, y). The frog cannot jump outside
the board, on a blocked cell, or on a cell that has already been visited. The aim
of the game is to choose the correct directions of the jumps and make the frog
visit all the empty cells of the board exactly once. Figure 1 shows an instance
of the Crazy Frog Puzzle and its solution.

In line with the recent interest in the complexity of puzzle games [3] [1],
we study how hard it can be to solve a Crazy Frog Puzzle game. In Section 2
we formally define the decision version of the Crazy Frog Puzzle (CFP) and
give some terminology; in Section 3 we prove that deciding if a given Crazy
Frog Puzzle has a solution is NP–complete. In Section 4 we prove that CFP
remains NP-complete even if the board is 1-dimensional; finally in Section 5 we
prove that the problem remains NP–complete even if the initial board has no
blocked cells and we will show that the 1-dimensional CFP without blocked cells

1

Figure 1: An instance of the Crazy Frog Puzzle on the left and its solution on
the right.

is equivalent to the problem of reconstructing a permutation π1, . . . , πn of the
integers [1 . . . n] given the absolute differences |πi+1 − πi|, i = 1, . . . , n− 1.

2 Crazy Frog Puzzle

We define the decision problem [4] that asks wether a given Crazy Frog Puzzle
has a solution or not:

Definition 2.1 (Crazy Frog Puzzle).

Input: An n × n partially filled board: some cells are empty some cells are
blocked, a starting cell c0 = (x0, y0) and a sequence of m jumps ∆1,∆2, ...,∆m,
∆i = (dxi, dyi),−n ≤ dxi, dyi ≤ n (m equals the number of the initial empty
cells).
Question: Does there exist a sequence of integers (s1, s2, ..., sm), si ∈ {−1,+1}
such that if a frog is placed on the starting cell, it can visit (we will equiva-
lently use the term fill) every empty cell of the board exactly once following the
sequence of jumps:

(xi, yi) = (xi−1 + si ∗ dxi, yi−1 + si ∗ dyi)

(i.e. the frog can choose only the direction of the given jumps)? The frog cannot
jump outside the board, on a blocked cell or on an already visited cell.

2

2.1 Terminology

We briefly introduce the terminology used in the next sections.

Horizontal jump : a jump of the form (∆x, 0) (horizontal step if ∆x = 1);

Vertical jump : a jump of the form (0,∆y) (vertical step if ∆y = 1);

Diagonal jump : a jump of the form (∆x,∆x) (diagonal step if ∆x = 1);

Sequence of jumps : a (sub)sequence ∆i,∆i+1, ...,∆m of jumps that are part
of the input; the frog at each step ∆i must choose a direction (si ∈ {±1})
and make the jump (+∆i or −∆i).

When there is no ambiguity horizontal/vertical/diagonal jumps are abbre-
viated with a single letter or a single number; for example if we are describing a
horizontal sequence of jumps, we can write 2, 3, 2 instead of (2, 0), (3, 0), (2, 0),
or write x1, x2, ..., xj instead of (x1, 0), (x2, 0), ..., (xj , 0).

Line : a row of the board; we use a string to represent it using these characters:
B=blocked cell, E=empty cell, F=frog; repeated cells can be represented
with power notation (e.g. B2FE3 = BBFEEE);

Strip : two or more lines;

Configuration : the status of the board cells (B,E or F) and the sequence
of the next jumps; a configuration is valid, if the frog can complete the
sequence of jumps choosing a ±1 direction for each of them;

Gadget : the configuration of a part of the board that have a particular role
in the reduction; a gadget can have one or more entrance cells and one
or more exit cells. A (valid) traversal of the gadget is a sequence of jump
directions that can lead the frog from an entrance cell to an exit cell. We
will use capital letters: (e.g. L,C, S) to indicate gadgets, capital letters
with a tilde (e.g L̃, C̃, S̃) to indicate jump sequences.

In the figures, gray cells represent blocked cells; a cell with a F represents the
frog position; a cell with a t represents the target cell; a cell with a V represents
an already visited cell; numbered cells represent a (valid) sequence of jumps
that the frog can make. The horizontal coordinates x = 0, 1, 2, . . . are from left
to right, the vertical coordinates y = 0, 1, 2, . . . are from top to bottom.

3 NP–Completeness

We will prove that the CFP problem is NP–hard giving a polynomial time
reduction from the Hamiltonian path problem on grid graphs [2]. First we
underline a general property that we will use in the gadget construction.

3

Lemma 3.1 (Gadget construction). Given a sequence of jumps (x1, y1), . . . , (xm, ym)
and a w × h rectangular area R of the board, we can construct a corresponding
gadget in which all jumps of the sequence must be made inside it and the frog
can exit it only at the end.

Proof. It is sufficient to extend the area adding a Bmax{xi} border of blocked
cells on the left/right, a Bmax{yi} border of blocked cells on the top/bottom.
Then we can make the frog enter the gadget with a vertical jump yIn > max{yi}
and leave it with another vertical jump yOut > max{yi}. The extended sequence
of jumps for the traversal is:

..., yIn, (x1, y1), ..., (xn, yn), yOut, ...

Note that a) if R contains m+ 1 empty cells (the number of jumps is equal
to the number of empty cells minus one), then a valid traversal of the gadget
implies that the frog must visit (fill) all its empty cells; b) instead of vertical
jumps we can use long enough horizontal or diagonal jumps. Figure 2 shows an
example of a 5× 5 partially filled region and a sequence of 6 jumps; the region
can be embedded in a 7× 7 gadget that can be traversed in 4 different ways; all
traversals completely fill the original inner region.

Figure 2: A 5×5 partially filled region and a sequence of 6 jumps; the region can
be embedded in a 7 × 7 gadget; two of the four possible traversals are showed
on the right.

3.1 Reduction overview

The reduction is from the NP–complete Hamiltonian path problem on grid
graphs (which may also contain holes) [2]. Let G∞ be the infinite graph whose
vertex set consists of all points of the plane with integer coordinates and in which
two vertices are connected if and only if the (Euclidean) distance between them
is equal to 1. A grid graph is a finite, node–induced subgraph of G∞.

4

Given an m × m grid graph G in which |V | = n, s, t ∈ V are the source
and target nodes; and the coordinates of node ui, 1 ≤ i ≤ n on the grid are
(xui

, yui
).

Pick the first k such that 2k ≥ 4m and build a 2k − 1× 2k − 1 board R with
all the cells blocked except the cells at coordinates (4xui

, 4yui
) corresponding

to the nodes of G and the empty target cell (4xt + 1, 4yt) one step aside from
the node t. We call this part of the board the graph area. The frog is initially
positioned on cell (4xs, 4ys).

For brevity, throughout the paper we will denote its size with w = 2k − 1
and v = 2k−1 = dw/2e.

We extend the board at the bottom with n−1 edge gadgets L1, L2, ..., Ln−1;
each edge gadget Li has an associated cleanup gadget Ci placed on its right.
We will generate a fixed sequence of jumps that will force the following logical
phases:

• [L̃1] enter gadget L1, choose one of the four directions up, down, left, right
and return to cell (x0 ± 4, y0) or (x0, y0 ± 4) in the graph area;

• [L̃2] enter gadget L2, choose one of the four directions and return to cell
(x1 ± 4, y1) or (x1, y1 ± 4) in the graph area;

• ...

• [L̃n−1] enter gadget Ln−1, choose one of the four directions and return to
cell (xn−1 ± 4, yn−1) or (xn−1, yn−1 ± 4) in the graph area;

• [T̃] jump to the target cell (xt, yt);

• enter the cleanup gadgets area;

• [C̃1] completely fill the lines of the edge gadget L1 that have an already
visited cell (visited during phase L̃1); then completely fill the lines that
are still empty;

• ...

• [C̃n−1] completely fill the lines of the edge gadget Ln−1 that have an
already visited cell (visited during phase L̃n−1); then completely fill the
lines that are still empty.

An outline of the whole board is shown in Figure 3.

3.2 Edge gadgets

Each edge gadget Li is a rectangular area that has the same width w of the
graph area, and 7w lines: 2w blocked lines; a first top inner strip of height w in
which even lines are empty and odd lines are blocked; w blocked lines; a second
bottom inner strip of height w in which even lines are empty and odd lines are
blocked; and finally 2w blocked lines. If the gadget is positioned at row li its
structure is:

5

Figure 3: An outline of the board generated by the reduction.

row # cells repetitions
li: Bw ×2w

li + 2w: Ew

Bw ×bw2 c

Ew ×1
li + 3w: Bw ×w
li + 4w: Ew

Bw ×bw2 c

Ew ×1
li + 5w: Bw ×2w

We make the frog enter an edge gadget from the graph area with a vertical
jump JLi on an empty cell of the upper inner strip, and leave it from the bottom
inner strip with a vertical jump J ′Li

= JLi
+2w that make it return to the graph

area.
The vertical positions li of the edge gadgets must be choosen in such a way

that the frog cannot leave one of them and directly jump to another edge gadget.
This is easily achieved using the following vertical positions: li = pi ∗ 7w, where
pi is the i–th prime number; so we can set: JLi = li + 2w and J ′Li

= JLi + 2w =
li + 4w.

The sequence of jumps inside each edge gadget is:

L̃seq = (2, 2), (0, 2w), (2,−2)

6

The first jump is a diagonal jump that must be made in the top inner strip,
the second jump forces the frog to jump to the bottom inner strip, the third
jump is a diagonal jump taht must be made in the bottom inner strip. The
traversal of gadget Li is forced with the sequence of jumps:

L̃i = (0, JLi
), L̃seq, (0, J

′
Li

)

Suppose that the frog is on cell (x, y) and enters the gadget Li from the top
with the vertical jump (0, JLi

): after the L̃seq jumps it can only use the final
vertical jump (0, J ′Li

) to return to the graph area, and its final position must be
one of the cells: (x + 4, y), (x − 4, y), (x, y − 4), (x, y + 4). After each traversal
only four cells of the inner strips are visited. Figure 4 shows an example of a
15× 60 edge gadget (w = 15) and its possible traversals.

Figure 4: The edge gadget and its four possible traversals.

We can define the first part of the jump sequence of the CFP in this way:

7

Phase Jumps

L̃1 (0, JL1), L̃seq, (0, J
′
L1

) enter edge gadget L1, traverse it
and return to graph area;

L̃2 (0, JL2
), L̃seq, (0, J

′
L2

) enter edge gadget L2, traverse it
and return to graph area;

...

L̃n−1 (0, JLn−1
), L̃seq, (0, J

′
Ln−1

) enter edge gadget Ln−1, traverse
it and return to graph area;

T̃ (1,0) jump to target cell t.

Note that the final odd horizontal step (the only odd horizontal step), forces
the frog to choose a path in the graph area in which the final cell is the one
correspoding to node t. Furthermore if the frog is on cell (xi, yi) and traverses
the edge gadget Li it must, by construction, be in one of the four adjacent
cells (xi ± 4, yi), (xi, yi ± 4) and that cell must be empty (i.e. correspond to
an unvisited node), so the sequence of cells visited in the graph area must
correspond to an Hamiltonian path from s to t on the original graph G. So the
following lemma holds:

Lemma 3.2. The frog can reach cell (xt, yt) from its initial position (xs, ys) if
and only if there is an Hamiltonian path from s to t in the original graph G.

At the end of the graph area traversal, most cells of the edge gadgets are
still empty, so we must extend the jump sequence to let the frog visit all of them
and completely fill the board.

The cleanup gadgets are more complicated because they must allow the frog
to fill both the lines of the edge gadgets that has a single blocked cell, and the
lines of the edge gadgets that have been left empty.

3.3 Cleanup gadgets

Every cleanup gadget Ci has two similar strip cleanup gadgets Sa
i ,Sb

i one for the
top and one for the bottom inner strip of the corresponding edge gadget Li. The
strip cleanup gadget is placed on the right of the corresponding inner strip, at
coordinate (w, li +2w) for top inner strips ((w, li +4w) for bottom inner strips),
and is a 3w + 2v × w rectangular area of the board (note that v = dw/2e is
simply the number of even rows in the inner strip) with the following structure:

row # cells
even rows: BwEwE2v

odd rows: BwBwE2v

Furthermore, outside the gadget at coordinates (3w, li+2w−1), (3w, li+3w), (3w+
2v−1, li +3w) there are three empty cells that are the entrance and exit cells of
the gadget Si. Figure 5 shows the outline of a strip cleanup gadget associated
to a 7× 7 (w = 7) inner strip.

8

Figure 5: A strip cleanup gadget Si associated to the top inner strip of the edge
gadget Li (assuming w = 7).

The jump sequence C̃i using for traversing the cleanup gadget Ci is:

C̃i = S̃i, (−2v + 1,), (0, w − 1), S̃i

where S̃i is the jump sequence for traversing a strip cleanup gadget and (−2v+
1,), (0, w−1) are the jumps from the exit of the top strip cleanup gadget to the
entrance of the bottom strip cleanup gadget.

The jump sequence S̃i that allows the frog to traverse the strip cleanup
gadget Si has the following components:

• v vertical selector sequences; that allow the frog to choose an even row of
the inner strip;

• 2 horizontal hole sequences that allow the frog to completely fill the two
even rows of the inner strip that have an already visited cell;

• v − 2 horizontal fill sequences that allow the frog to completely fill the
remaining even empty rows of the inner strip.

The horizontal hole and fill sequences are embedded in the vertical selector
sequences.

3.4 Horizontal sequences

We see how to build the two horizontal hole sequences that can be used to fill
the lines of the edge gadgets that contain an already visited cell.

Lemma 3.3 (Horizontal hole sequence). If w = 2k− 1, v = 2k−1, starting from
the line:

EwBwEwBwFE

we can force the frog to correctly visit and fill the line except one empty (or
visited) cell in an arbirary even position of the leftmost empty block and finally
jump on the rightmost cell; i.e. the final configuration is:

(V a−1EV w−a)BwV wBwV F

where a is even.

9

Proof. We use the following sequence of horizontal jumps:

H̃ = 2w + v, Ũk−1, Ũk−2, ..., Ũ2, 1, 2w, 2, 1, Ũ
R
2 , Ũ

R
3 , ..., Ũ

R
k−1, v + 1

Where Ũj is the sequence of horizontal jumps:

2j−1 times︷ ︸︸ ︷
1, 1, ..., 1 , 2j + 2j−1−1; and

ŨR
j is the reverse of Ũj .

The first jump forces the frog in the middle of the first Ew block, then it
can choose which half part to fill, and then jump in the middle of the other
empty half. The process can be repeated until it visits the w − 1 cells; then it
can jump on the second Ew block and completely fill it reaching its middle by
reversing the choices made on the first block. Finally it can make a final v + 1
jump to reach the rightmost empty cell. Informally the inner strip row can be
seen as a binary tree with the leaves corresponding to even cells; the sequence of
jumps allow the frog to choose a half of the tree, fill it, jump to the other half,
fill it and so on until the tree is completely visited, except for a single arbitrary
leaf.

Figure 6 show a possible traversal of the line E7B7E7FE, (k = 3, w = 7, v =
4) that leaves a hole (corresponding to an already visited cell) in even position
using the sequence of jumps defined in Lemma 3.3.

Figure 6: A possible horizontal hole sequence traversal that fills an inner strip
row with an already visited cell.

We can simplify the horizontal hole sequence and force the frog to completely
fill an unvisited inner strip row.

Lemma 3.4 (Horizontal fill sequence). If w = 2k − 1, v = 2k−1, starting from
the line:

EwBwEwBwFE

10

we can force the frog to correctly visit and fill all the empty cells and finally
jump on the rightmost cell; i.e. the final configuration is:

V wBwV wBwV F

Proof. We can use the the following horizontal jump sequence:

Z̃ = 3w,

w−1 times︷ ︸︸ ︷
1, 1, ..., 1 , w + 1,

w−1 times︷ ︸︸ ︷
1, 1, ..., 1 , 2

It forces the frog to jump to the leftmost empty cell, fill the w empty cells of
the first Ew block, jump to the second Ew block, fill it and finally jump on the
rightmolst cell.

Figure 7 shows three horizontal hole sequences with the visited cell in dif-
ferent positions and a horizontal fill sequence, both on an inner strip of width
w = 15 (k = 4, v = 8).

Figure 7: Three horizontal hole sequences with the visited cell in different
positions and a horizontal fill sequence on an inner strip of width w = 15
(k = 4, v = 8).

Note that in both types of horizontal sequences, we can extend the first and
last step and the frog can be positioned farther from the inner strips.

3.5 Vertical selector sequence

Using a similar sequence of the horizontal hole sequence, we can build a sequence
of jumps that allows the frog, placed on the top of a 2v × w empty area to
vertically select a different even row, v times and finally exit the area on the
cell at the bottom-left.

Lemma 3.5 (Vertical selector sequence). If w = 2k−1, v = 2k−1, starting from
the 2v × w + 2 configuration:

11

row # cells
li + 2w − 1 : FB2v−2B

li + 2w: E2v

...
E2v

li + 3w : EB2v−2E

we can allow the frog to choose a different even row v times, and reach the
configuration:

row # cells
li + 2w − 1 : V B2v−2B

li + 2w: V 2v

...
V 2v

li + 3w : FB2v−2V

Proof. The sequence is:

Ṽ = (0, v), Ṽ ′1, (1, 0), Ṽ ′′1 , (1, 0), ..., (1, 0), Ṽ ′v, (1, 0), Ṽ ′′v , (0, v), (2v − 1, 0)

Where:
Ṽ ′i = Ũk−1, Ũk−2, ..., Ũ2, 1, 2

Ṽ ′′i = 2, 1, Ũ2, Ũ3, ..., Ũk−1

Ũj is the sequence of vertical jumps:

2j−1 times︷ ︸︸ ︷
1, 1, ..., 1 , 2j + 2j−1 − 1; and ŨR

j is the

reverse of Ũj .

Figure 8 shows the possible traversal of a 7×8 area using the vertical selector
sequence.

3.6 Linking the gadgets

The horizontal inner jumps (1, 0) in the vertical selector sequences Ṽ can be
replaced by an horizontal hole sequence or by an horizontal fill sequence (ex-
tending their first and last jump). So we can build a sequence of jumps that
allows the frog to: a) select 2 even rows of the inner strip with a visited cell and
fill them; b) select the reamining v − 2 empty even rows and fill them.

The complete inner strip sequence Si is:

S̃i = (0, v), Ṽ ′1, H̃, Ṽ
′′
1 , (1, 0), Ṽ ′2, H̃, Ṽ

′′
2 , (1, 0),

Ṽ ′3, Z̃, Ṽ
′′
3 , (1, 0), ..., Ṽ ′v, Z̃, Ṽ

′′
v , (0, v), (2v − 1, 0)

Figure 9 shows a possible traversal of the strip cleanup gadget of Figure 5.
Finally we can link together the cleanup sequences C̃i; first we add an empty

cell at coordinates (3w, yt) that allows the frog to jump from the target cell

12

Figure 8: An example of the vertical selector sequence on a 7 × 8 area (w =
7, v = 4).

Figure 9: A possible traversal of the strip cleanup gadget of Figure 5, that
combines the vertical selector sequence with the horizontal sequences.

13

(xt, yt) to the entrance cell of the top inner strip gadget Sa
i ; then we add a

vertical jump from gadget Ci to gadget Ci+1, i = 1, ..., n− 2:

C̃ = (3w − xt, 0), (0, l1 + 2w − 1− yt), C̃1, (0, l2 + 2w − 1− l1 + 5w), ...

..., (0, ln−1 + 2w − 1− ln−2 + 5w), C̃n−1

Theorem 3.6. The Crazy Frog Puzzle is NP–complete.

Proof. The problem is NP–hard: by construction if the original grid graph prob-
lem has a solution, then there is a valid traversal of the graph area and the frog
can complete the board using the cleanup gadget. If the board has a valid
traversal, as seen above the sequences of nodes traversed in the graph area cor-
responds to a Hamiltonian path in G from s to t. The instance of the CFP
can be constructed in polynomial time because the size of the whole board is
3w+ 2v× 7pnw, where w = 2k− 1, v = 2k−1, pi is the i–prime, and 2k− 1 < 8n;
so the board can be constructed in time O(n2 log n).

The problem is in NP because a solution can easily be checked in polynomial
time.

4 One dimensional variant

It is easy to see that even if we restrict the board to be one dimensional the
problem remains NP–complete.

Theorem 4.1. The Crazy Frog Puzzle remains NP–complete even if restricted
to 1-Dimensional boards (1-D Crazy Frog Puzzle), i.e. boards of size w×1.

Proof. The immediate reduction is from the Crazy Frog Puzzle: given an
instance of the CFP, i.e. a n×n partially filled board and a sequence of jumps:
∆1,∆2, ...,∆m check the sequence and if there is a jump (∆xi,∆yi) such that
dxi ≥ n or dyi ≥ n reject (the jump brings the frog outside of the board).
Otherwise expand it to size 3n × 3n adding a border of blocked cells of width
n in all the four directions. Then build an equivalent one dimensional crazy
frog puzzle of size (3n)2 putting the lines of the expanded board side by side
(cells (x, y) is mapped to cell x+3ny) and converting every bidimensional jump
(∆xi,∆yi) to the one dimensional jump: ∆xi +3n∗∆yi. By construction every
one dimensional ∆xi+3n∗∆yi jump will lead the frog from x0+3ny0 to the cell
(x0 ±∆xi) + 3n ∗ (y0 ±∆y) that corresponds to the original bidimensional cell
(x0 ±∆xi, y0 ±∆yi). Borders prevent the frog to make moves that are invalid
in the corresponding bidimensional configuration; for example using a left jump
x+ 3n ∗ 0 from cell 0 + 3n ∗ 1 (on the left border in the bidimensional board) to
reach another part of the one dimensional board.

Figure 10 shows a simple example of a 3× 3 CFP instance transformed to a
1-Dimensional CFP board of length 81.

We can also fix the starting position of the frog:

14

Figure 10: A simple example of a 3 × 3 CFP instance transformed to a 1-
Dimensional CFP board of length 81.

15

Lemma 4.2. Without loss of generality we can assume that in the 1-D CFP
instance the frog is placed on the leftmost cell.

Proof. Suppose that the 1-D board is R = (E|B)aF (E|B)b and the sequence of
jumps is: J1, J2, ..., Jm. We can extend the board with a cell on the left that
will be the new starting position of the frog: S′ = FR and add a jump to the
sequence: (a + 1, 0), J1, J2, ..., Jm. The first jump, that must be towards the
right, places the frog on the original position.

5 Permutation reconstruction from differences

We first prove that 1-D CFP is hard even if the initial board is empty.

Lemma 5.1. 1-D CFP reamins NP-complete even if the initial board is empty.

Proof. Given an instance of the 1-D CFP, i.e. a configuration R = F{B,E}n−1
and a sequence J̃ = J1, J2, ..., Jm of m jumps; suppose that R contains p =
n − m − 1 blocked cells at coordinates x1, x2, ..., xp; let d1 = x1, di = xi −
xi−1, i = 2, 3, ..., p, dp+1 = n−xp. We start with an empty line of length 2n+1:
R′ = FEnEn and extend the jump sequence in this way:

J̃ ′ = d1 + 1, d2, ..., dp, dp+1,

n−1 times︷ ︸︸ ︷
1, 1, ..., 1 , 2n− 1, J̃

(note that |J̃ ′| = 2n). The n− 1 steps forces a sequence of n contiguous visited
cells, and it must be aligned with the rightmost part of the board otherwise
the frog will never be able to reach that cell during jumps Ji, because Ji < n
(otherwise the original instance doesn’t have a solution). But, by construction,
the only way to align it to the right is to make the di jumps towards the right,
and they recreate exactly the p blocked cells of R. The jump 2n− 1 forces the
frog to the second cell, which is also the starting cell of the original configuration
R. The modified instance with the empty board has a solution if and only if
the original instance has a solution.

Figure 11 shows an example of reduction from 1-D CFP to 1-D CFP with
initial empty board.

Definition 5.2 (Permutation Reconstruction from Differences).

Input: a set of n− 1 distances a1, a2, ..., an−1 with ai > 0
Question: does exist a permutation π1, ..., πn of the integers [1..n] such that
|πi+1 − πi| = ai, i = 1, ..., n− 1 ?

Note that if π1, ..., πn is a valid solution, then the mirrored sequence n−π1+
1, n− π2 + 1, ..., n− πn + 1 is also a valid solution. Figure 12 shows an example
of a permutation reconstruction from differences problem. The reduction from
the 1-D CFP with initial empty board to the permutation reconstruction from
differences problem is straightforward.

16

Figure 11: An example of reduction from 1-D CFP to 1-D CFP with initial
empty board.

Figure 12: An instance of the Permutation Reconstruction from Differences
problem: the differences ai are (2, 1, 2, 1, 5, 3, 1, 1), n = 9 and the recon-
structed permutation is (5, 7, 6, 8, 9, 4, 1, 2, 3); the mirrored valid permutation
is (5, 3, 4, 2, 1, 6, 9, 8, 7) .

17

Theorem 5.3. Permutation Reconstruction from Differences (PRD)
is NP–complete.

Proof. Given an instance of the 1-D CFP with initial empty board of length n
and jumps J1, J2, ..., Jn−1 it has a solution if and only if a valid permutation of
[1..n+1] can be reconstructed from differences a1 = n and ai = Ji−1, i = 2, ..., n.

(⇒) The frog visits all the cells of the board exactly once, so its positions
xi, i = 1, ..., n during the traversal (where x1 = 0 is its starting position) is a
permutation of [0..n−1] and it can be transformed to a permutation of [1..n+ 1]
setting π1 = n+ 1 and πi = xi−1 + 1, i = 2, ..., n+ 1 .

(⇐) Suppose that π1, ..., πn+1 is a valid permutation that satisfy the differ-
ence constraints; we have that π1 must be 1 or n+ 1 because the first difference
a1 = n. Suppose that π1 = n + 1, then π2 = 1 and π2 − 1, . . . , πn+1 − 1
are a valid sequence of positions of the frog because |(π3 − 1) − (π2 − 1)| =
J1, |(π4 − 1) − (π3 − 1)| = J2, . . ., and they represent a valid solution to the
1-D CFP instance, too: the sign of jump Ji is positive if πi+2 > πi+1, negative
otherwise. If π1 = 1 we can simply mirror the values replacing every πi with
π′i = (n+ 1)− πi + 1 because their absolute differences don’t change.

6 Conclusion

We proved the hardness of a simple problem on permutations that could shed
light on other combinatorial or arithmetic open problems. For example there
could be a corrrelation with the graceful labeling problem, indeed if the ai are
themselves a permutation of [1..n] (all values are distinct) then the permutation
reconstruction from differences (PRD) problem is equivalent to verify that the
sequence is a graceful labeling of the line of n + 1. So it would be interesting
to study some restricted versions of the PRD problem; for example what is its
complexity if the differences are from a finite set of size k. As an intermediate
step we introduced a new addictive puzzle game that we hope will be soon
playable online or as a smartphone application.

References

[1] Erik D. Demaine and Robert A. Hearn. Playing games with algorithms:
Algorithmic combinatorial game theory. In Michael H. Albert and Richard J.
Nowakowski, editors, Games of No Chance 3, volume 56 of Mathematical
Sciences Research Institute Publications, pages 3–56. Cambridge University
Press, 2009.

[2] Alon Itai, Christos H Papadimitriou, and Jayme Luiz Szwarcfiter. Hamilton
paths in grid graphs. SIAM Journal on Computing, 11(4):676–686, 1982.

[3] Graham Kendall, Andrew J. Parkes, and Kristian Spoerer. A survey of
np-complete puzzles. ICGA Journal, 31(1):13–34, 2008.

18

[4] Michael Sipser. Introduction to the theory of computation. PWS Publishing
Company, 1997.

19

