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Abstract

Given a set P of m integer points on a n×n square grid and an integer
k ≤ m, the problem of finding a rectilinear simple polygon with k or more
vertices (v1, v2, ..., vt), vi ∈ P, t ≥ k (Hidden Polygon Puzzle problem) is
NP–complete.

1 The Hidden Polygon Puzzle

1.1 Definition

This short paper is inspired by the question “Complexity of hidden polygon
puzzle on square grids?” by Mohammad Al-Turkistany appeared on the question
and answer site cstheory.stackexchange.com.

Definition 1.1. The Hidden Polygon Puzzle (for brevity HPP) decision problem
is:

Input: a set P of m integer points on a n × n square grid and an integer
k ≤ m;

Question: does exist a simple rectilinear polygon with k or more vertices
(v1, v2, ..., vt), vi ∈ P, t ≥ k?

Figure 1 shows an example of a HPP puzzle.
The problem is a slight variant of the puzzle game Hiroimono in which the

player must collect all the stones on a grid board, he can move in one of the four
directions, but he can change it only when he picks up a stone, and he cannot
make 180◦ turns. Hiroimono has been shown to be NP–complete [1].

2 Complexity

The problem is in NP because a solution (v1, v2, ..., vj) can easily be verified in
polynomial time; it is enough to check that: 1) j = k, 2) for all i, vi ∈ P , 3)
vi are all distinct, 4) vertices vi, v(i+1) mod k, v(i+2) mod k form a 90◦ corner, 5)
check that for every pair of edges ei, ej the two edges don’t intersect.
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Figure 1: Given the 21 points on the right, can we find a simple rectilinear
polygon with at least 16 vertices? A possible solution is shown on the right.

We prove that the problem is NP–hard using a reduction from the Hamil-
tonian cycle problem on grid graphs with degree ≤ 3 which is NP–complete
[2].

Given a m×m grid graph with degree ≤ 3, G = (V,E) with n nodes, suppose
that each node ui is at coordinate (xi, yi), 1 ≤ xi, yi < n − 1 in the grid (for
simplicity we assume that there is an empty border of width 1). If the graph has
a node of degree 1 then build a false dummy HPP instance because it cannot
have an Hamiltonian cycle. So we assume that every node has degree geq2.

We construct a HPP grid replacing every node n with a node gadget.

2.1 Node gadget

The node gadget corresponding to node ui at cordinates (xi, yi) is a d× d grid
placed at coordinates (d ∗ xi, d ∗ yi) in the HPP grid with d = 2 ∗ n ∗ g + 1 (we
will see later which value to use for g); for brevity we set z = n ∗ g + 1.

There are three types of node gadgets:

• T gadget used to replace nodes of degree three;

• Turn gadget used to replace nodes of degree 2 that have two orthogonal
incident edges;

• Line gadget gadget used to replace nodes of degree 2 that have two align
incident edges.

Every node gadget is ideally divided in 4 ng×ng quadrants (Q1, Q2, Q3, Q4)
with a central cross of width 1. T gadgets have a central node at coordinates
(ng, ng); all have two sets ZP1, ZP2 of g Zigzag points placed in two different
quadrants and two Jump points J1, J2; Turn gadgets have an Extra point E on
another quadrant.

The Zigzag points for a gadget representing node ui (at coordinates (xi, yi)
in grid G) are ideally placed in two g × g zigzag boxes at relative coordinates
(i ∗ g, i ∗ g) for quadrant Q1 (resp. (i ∗ g +ng + 1, i ∗ g), (i ∗ g, i ∗ g +ng + 1), (i ∗
g + ng + 1, i ∗ g + ng + 1) for Q2, Q3, Q4). So the absolute position in the HPP
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grid for the zigzag box in quadrant Q1 is (d ∗xi + i ∗ g, d ∗ yi + i ∗ g) (add ng + 1
for the other quadrants). In this way every pair of zigzag points of two distinct
gadgets have distinct horizontal and vertical coordinates. In a zigzag box, the
g Zigzag points are aligned horizontally or vertically depending on the gadget,
except the first point of ZP1 and the last point of ZP2 which are shifted by
one. In every gadget the g Zigzag points of ZP1 are aligned (horizontally or
vertically) with the g Zigzag points of ZP2.

Jump points are placed in the central cross and are aligned with one zigzag
point: jump point J1 is aligned with the first point of ZP1, Jump point J2 is
aligned with the last unaligned point of ZP2, except in Turn gadget in which J2
is aligned with the Extra point E and E is aligned with the last point of ZP2.

The ten possible node gadgets and the positions of the Zigzag, Jump and
Extra points are shown in Figure 2a–i.

We describe how a polyline can traverse the T gadget shown in Figure 2a.
By construction, the Zigzag points of a gadget don’t share any coordinate with
the ZigZag points of the other gadgets, so the only way that a polyline can enter
and exit the gadget is through Jump points J1 or J2, or the central point C. It
cannot self–intersect so the valid combinations are:

t1: out→ J1 → ZP1 ↔ ZP2 → J2 → out
t2: out→ J1 → ZP1 ↔ ZP2 → J2 → C → out
t3: out→ J1 → C → out
t4: out→ J2 → C → out
t5: out→ J1 → C → J2 → out
t6: out→ C → out (vertically)

or the corresponding traversals in the reverse direction (Figure 3. Note that
in traversals t5 and t6 the polyline doesn’t make any turn.

So there are two traversal t1 and t2 in which the polyline enters and exits
the Zigzag boxes (we will see later what this means); but it is important to
notice that if the polyline follows t3, t4, t5, it will never be able to enter and
exit the Zigzag boxes later in its path because those traversals “throw out” at
least on Jump point and both are needed to enter and exit the Zigzag points
boxes; if it follows t6 then it preclude the possibility to move from ZP1 to ZP2

(or vice versa) without creating a self-intersecting polyline. So the only way to
gain access to the ZP1, ZP2 points is to follow the underlying edges of the grid
graph.

In the traversals t1, t2 the polyline can use the Zigzag points of ZP1 and
ZP2 to make a series of turns as shown in Figure 4. In particular, if g is odd,
it can make 2g turns (i.e. collect 2g vertices). Figure 4 shows a T gadget and a
Turn gadget that correspond to two nodes of the original grid graph. The bold
polyline shows a valid traversal that enters the Zigzag points of both gadgets.
Note that, by construction, the Zigzag points of the two gadgets don’t have any
horizontal or vertical coordinate in common.

The traversals of the Turn gadgets and Line gadgets are similar, but in this
case there is only one valid traversal that can use the Zigzag points (which
follows the two edges incident to the corresponding node).
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Figure 2: The ten d×d node gadgets that are used to simulate a valid traversal
of the original grid graph with degree ≤ 3.
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Figure 3: The possible traversals of a T gadget. Only t1 and t2 use the Zigzag
points; the others are valid, but block the access to the Zigzag points in.

Figure 4: A T gadget and a Turn gadget that correspond to the node u1, u2 of
the portion of the grid graph shown in the upper right corner. The bold polyline
shows a valid traversal that enters the Zigzag points of both gadgets.
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So we can summarize the maximum number of vertices that a polyline can
collect traversing each gadget and using the Zigzag points:

Gadget Vertices
T gadget 2g + 2 (trav. t1) or 2g + 3 (trav. t2)

Turn gadget 2g + 3
Line gadget 2g + 2

If we choose the value g = n, and k = n ∗ (2g + 2) = 2n2 + 2n then the
only way to build a k vertices polygon is to traverse all zigzag point of all node
gadgets: if only n − 1 gadgets are traversed by the polyline using their Zigzag
points and scoring the maximum number of vertices 2g + 3 and the remaining
gadget is traversed scoring 3 vertices (J1, J2, C) then the total number of vertices
is:

(n− 1)(2g + 3) + 3 = 2ng− 2g + 3n = 2n2 − 2n+ 3n = 2n2 + n < 2n2 + 2n = k

so the polyline cannot be a valid solution. Furthermore every gadget can be tra-
versed accessing the Zigzag points only once, so if there is a solution to the HPP
problem, the sequence of gadgets traversed by the polygonal line corresponds
to an Hamiltonian cycle in the original grid graph G. Vice versa, if the original
grid graph G has an Hamiltonian cycle, then using the sequence of nodes of
the cycle we can build a polygonal line in the corresponding HPP puzzle with
a number of vertices greater than or equal to k = n ∗ (2g + 2).

Theorem 2.1. HPP puzzle is NP–complete.

Proof. The problem is in NP and the reduction from the Hamiltonian cycle prob-
lem on grid graph with degree ≤ 3 described above can be done in polynomial
time, so it is also NP–hard.

Figure 5 shows a n = 10 nodes grid graph, the corresponding HPP instance
with k = 2n2 + 2n = 220 in which Zigzag points are collapsed (every bold box
contains n points), and a simple rectilinear polygon with 30 + 20 ∗ 10 = 230 > k
vertices that is a valid solution and that corresponds to an Hamiltonian cycle
on the original grid graph.

3 Conclusion

What about programming a real hidden polygon puzzle “app” that can be played
online in a browser or downloaded in your favourite smartphone ?!? ...
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Figure 5: a) A grid graph G with n = 10 nodes and b) the corresponding HPP
instance with k = 220. The Zigzag points are collapsed to make the drawing
more readable; each bold box contains n Zigzag points. The bottom drawing c)
shows a simple rectilinear polygon with 230 > k vertices that is a valid solution
and that corresponds to an Hamiltonian cycle on the original grid graph.
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