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Abstract

The puzzle game Net, also known as FreeNet or NetWalk, is played on
a grid filled with terminals and wires; each tile of the grid can be rotated
and the aim of the game is to connect all the terminals to the central
power unit avoiding closed loops and open-ended wires. We prove that
Net is NP–complete.

1 Introduction

Net is an addictive tile rotation game included in the Simon Tatham’s Portable
Puzzle Collection [8]; it was inspired by another flash game called FreeNet by
Pavils Jurjans and there are other variants of it on the web (e.g. NetWalk [6],
Tubing).

The game is played on a square grid: the computer prepares a network of
terminals connected to a central power unit through wires, and then shuffles
the network by rotating every tile randomly. Your job is to rotate it all back
into place. The successful solution will be an entirely connected network, with
no closed loops. As a visual aid, all tiles which are connected to the one in the
middle are highlighted.

An example of a Net game is shown in Figure 1.
In line with some recent papers focused on the computational complexity of

puzzle games [1] [5] we study the decision problem associated with the game:
given an initial configuration of the game on a n × n grid, decide if it has a
solution or not.

The game Net can be considered a variant of the tile rotation problem intro-
duced and studied in [3] (Tile Rotation Problem and Minimization Tile Rotation
Problem), with the additional constraint that the tiles cannot form closed loops.

In Section 2 we formally define the decision problem associated to the game;
in Section 3 we describe the particular configurations of the game that we use
in the reduction; in Section 4 we prove the NP–completeness using a reduction
from the Hamiltonian cycle problem on grid graphs with degree ≤ 3.
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Figure 1: A 5 × 5 Net game: the terminals must be connected to the central
power unit using the wires. Closed loops and open-ended wires are forbidden.

2 Definitions

The game Net is played on a n× n grid; each tile of the grid can be one of the
following objects:

1. Terminal: it has a single connector on one of its sides;

2. Line wire: a straight line with two endpoints;

3. Corner wire: a line that makes a 90 degree turn;

4. T wire: a splitted line with three endpoints;

5. Power unit: has one, two or three connectors; in every game there is
only one power unit.

The objects of the game are shown in Figure 2.

Figure 2: The objects of the puzzle game Net: terminal, line wire, corner wire,
T wire and power unit.

A Net initial configuration (or simply a game), is a list of n × n integers
(t11, t12, ..., tnn) representing the tiles of the grid.

Every tile can be rotated 0, 90, 180 or 270 degrees; a valid solution of the
game is a configuration reached from the initial configuration rotating the tiles
and such that: every terminal is connected to the power unit, there are no closed
loops, there are no wires with unconnected endpoints, and the power unit has no
unused connectors. A solution can be represented using a list of n× n integers
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(r11, r12..., rnn) where each rij ∈ {0, 90, 180, 270} represents the rotation of the
i–th tile.

We can formalize the decision problem Net: given a list of n×n integers that
represent the initial configuration of a Net game, does a valid solution exist?

3 Gadgets

For an introduction to the theory of NP–completeness see [2]; for an introduction
to the study of computational complexity applied to puzzle games see [4].

To prove the NP–hardness of Net we will use some gadgets that are based on
the configuration shown in Figure 3. There are two stacked blocks of wires, the
upper block have three pairs of wires A, B and C, we call them the interfaces
of the gadget. Using a constraint solver program, we examined the possible
configurations in which there are no loops and all endpoints are connected except
those of the three interfaces. If the three interfaces are all directed outward
(Figure 3a), the lower block is isolated and forms a loop. If two interfaces
are directed outward and one is directed inward, then the lower block can be
correctly connected (Figure 3b,c,d). If only one interface is directed outward,
then there is at least one inner loop (Figure 3e); if all the interfaces are directed
inward there are at least two inner loops (Figure 3f). Furthermore no valid
configuration exists if the two wires of one or more interfaces are directed in
opposite directions. If the two wires of an interface are directed outward we say
that the interface is active.

The two interfaces A and C can be rotated and the gadget above can be
embedded in the 16 × 16 square grid shown in figure 4a; spaces are filled with
terminals and wires. We will call this gadget T–gadget. If we remove one of the
interfaces of the T–gadget and force the other two to point outward we obtain
the Line–gadget (Figure 4b) and the Corner–gadget (Figure 4c). We can also
can build a Fill–gadget that can be connected using only one wire and it can
optionally be extended on the other three sides (Figure 4d): in order to connect
a Fill-gadget to another gadget it suffices to replace one of the border terminals
with a single line wire.

All the gadgets can be rotated 0, 90, 180 or 270 degrees, and they are
surrounded by a border made with terminals. When two gadgets are placed side
by side, some of the terminals on the border are forced to point inward in order
to satisfy the rules of the game. These forced terminals “influence” the feasible
rotations of the adjacent cells and a larger portion of the gadget becomes fixed.
Some examples of forced configurations are shown in Figure 5: forced terminals
and wires are shown in red, the asterisk marks the terminals and wires forced
by the surrounding cells.

In particular the valid configurations of the T–gadegt correspond to those
of the basic gadget: exactly two interfaces must point outward. A T–gadget
surrounded by three T–gadgets (on top, left and right) and a Fill–gadget (on
bottom) is shown in Figure 6; forced terminals/wires colored with red have
been checked with a constraint solver program and the only free cells (colored
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Figure 3: Basic gadget; in order to connect all wires without loops exactly two
of the three interfaces A,B,C must be directed outward (figures (b), (c), (d)).
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Figure 4: The basic gadget embedded in a 16 × 16 square grid. Spaces are
filled with terminals and wires. The green area corresponds to the three origi-
nal interfaces (a). Removing one interface we obtain the Line–gadget (b) and
Corner–gadget (c). The Fill–gadget has only a single wire pointing outward (d).

Figure 5: Examples of forced configurations: red terminals/wires are already
forced, cells marked with an asterisk become forced by the surrounding cells.
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with black) that can be rotated without violating the game rules are those
corresponding to the three interfaces A,B,C.

Figure 6: Forced terminals/wires of a T–gadget; the only free cells that can be
rotated without violating the game rules are drawn in black and correspond to
the three interfaces A,B,C.

The Line–gadget, Corner–gadget and Fill–gadget are entirely forced.
We notice that, in every valid configuration, the T/Corner/Line gadgets are

splitted in two separated halves and in order to power them, both wires of the
interfaces must be linked to the power unit.

4 Complexity of the puzzle game Net

Theorem 4.1. Net is in NP

Proof. A solution can be checked in polynomial time using a depth first search
following the wires from the power unit. During the search we keep track of
the terminals connected and at the end of each branch we must find a terminal,
otherwise there is an open–ended wire or a loop.

Theorem 4.2. Net is NP–hard

Proof. We use a reduction from the Hamiltonian cycle problem on grid graphs
with degree ≤ 3 which is NP–complete [7]. Without loss of generality we can
assume that the degree of each node of the grid graph is 2 or 3 (if a graph
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has a degree 1 node it cannot have an Hamiltonian cycle). Given a grid graph
G = (V,E) with 2 ≤ deg(u) ≤ 3 for every u ∈ V , we can scale it by 16 and
replace each degree 3 node with a T–gadget, and each degree 2 node with a
Line–gadget or Corner gadget. The gadgets are rotated according to the edges
of G: if (ui, uj) is an edge of G and gi, gj are the corresponding gadgets, then
an interface of gi is adjacent to an interface of gj . Empty spaces of the grid are
replaced with Free-gadgets connected to the adjacent gadegts.

Finally the power unit with two connectors is inserted in the center of one
Corner–gadget (we will call it Power–gadget) that corresponds to a corner of the
grid graph as shown if Figure 7: it “sends” the power outward using one of the
two wires of the interface A, while the other wire of interface A is connected to
a terminal (F in the figure); the two wires of the interface C are short–circuited
(corner wires L in the figure).

Figure 7: The power unit placed in one of the Corner–gadget (Power gadget).
It sends the power outward using one of the two wires of the interface A, while
the other wire of interface A is connected to a terminal (F ); the two wires of
the interface C are short–circuited (L).

The graph G has an Hamiltonian cycle if and only if the corresponding Net

game has a solution.

⇒ Suppose that G has an Hamiltonian cycle (u1, u2, ..., un, u1), and without
loss of generality assume that u1 is the node corresponding to the Power–gadget.
Then by construction we can rotate the wires of each T–gadget to follow the cy-
cle; in particular if ..., ui−1, ui, ui+1, ... is a portion of the cycle and gi−1, gi, gi+1

are the corresponding gadgets in the game:

• if ui is a degree 2 node, then the two interfaces of gi can be activated; and
the power can be transferred from gi−1 to gi+1;
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• if ui is a degree 3 node, then its wires can be rotated in order to activate
the interfaces adjacent to gi−1 and gi+1 (and the power can be transferred
from gi−1 to gi+1).

At the end of the process, one of the two halves of every T/Corner/Line
gadget is directly linked to the power unit; but at the end of the Hamiltonian
cycle the short–circuit L of the Power–gadget transfers the power to the other
side and it can return back activating the unpowered half of each gadget. Fi-
nally the last terminal F is activated. Free–gadgets are powered from adjacent
gadgets. No loops in the game are generated and all terminals are powered.

⇐ If the Net game corresponding to the graph G has a solution, then in
every gadget that correspond to a node in G exactly two interfaces are active;
but each active interface must be adjacent to another active interface of another
gadget (otherwise there is an open–ended wire). So starting from the Power–
gadget we can build a list of linked gadgets g1, g2, ..., gm. Every gadget must be
linked so m is greater or equal to the number of gadgets; and every gadget can
appear only once in the sequence because exactly two interfaces are active (i.e.
m = n = |V |). Moreover the only way to transfer the power from one half of
each gadget to the other is through the loop L, so gm must be connected to the
C interface of the Power–gadget.

By construction, gi, gi+1 are linked through their interfaces if and only if the
corresponding nodes ni, ni+1 belong to an edge of G ((ui, ui+1) ∈ E), so the
sequence u1, u2, ..., un, u1 is an Hamiltonian cycle in G.

Figure 8: In the Net wrapping variant the wrapping wires can be forbidden
adding an extra border of terminals.

There is also a variant of the game that allows the wires to wrap around the
borders; we call this version Net wrapping.
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Corollary 4.3. Net wrapping is NP–complete

Proof. We can reduce the game Net to a Net wrapping game adding an extra
border of terminals that blocks the transfer of power from one border to another
and therefore makes the Net wrapping game equivalent to a Net game (see
Figure 8).

5 Conclusions

Happy wiring!
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