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Abstract

We settle two open problems related to the rolling cube puzzle: Hamil-
tonian cycles are not unique even in fully labeled boards and rolling
cube puzzle is NP-complete in labeled boards without free cells and with
blocked cells.

1 Introduction

In a rolling cube puzzle a die must be rolled on a board visiting all its labeled
square cells and return to its starting location; at every step the number on the
top face of the die must match the number of the underlying labeled cell. The
die can be rolled between two adjacent cells by tipping it over along one of its
bottom edges that touches the board; it cannot be rotated within the same cell.

Rolling cube puzzles have been made popular by Marting Gardner who wrote
about them in three of his famous Mathematical Games columns published in
Scientific American review.

There are many variants of the game, for example: Heavy boxes [3], Red-
Faced Cube [4], Single Vacancy Problem [5], rolling cube mazes [1]. In this paper
we focus on the variant studied in [2]: the die is a standard right-handed die (see
Figure 1), the board is a grid with square cells; cells can be of three types: labeled
with a number between 1 and 6, free or blocked. The die must visit all labeled
cells exactly once and the number on the top face must match the number of
the cell; free cells can be visited any number of times and with any number on
the top face; finally the die cannot roll over a blocked cell. The decision problem
“Can a die be rolled over a labeled board with some free cells and some blocked
cells?” is NP-complete [2].

In Section 2 we define the notation used in the rest of the paper. In Section 3
we give an example of a full labeled board without free cells and without blocked
cells with two distinct Hamiltionian cycles. This solves an open problem posed
in [2].

In Section 4 we define the gadgets that will be used in Section 5 to prove
that it is NP-compete to decide whether a die can be rolled over a labeled board

1



without free cells and with some blocked cells. This improves the result achieved
in [2].

The complexity of rolling a die over a full labeled board without free cells
and without blocked cells remains an open problem.

2 Notation

A standard right-handed die and its unfolded faces are show in Figure 1.

Figure 1: A die and a valid rollable path on a labeled board.

The board is represented using a grid with labeled square cells; blocked cells
are represented with empty squares. We will not use free cells.

The state of the die can be specified by its board position, its top face
and its orientation. Indeeed if we fix the top face, there are still four possible
orientations. We will represent the orientation with a small dash placed upward,
downward, leftward or rightward near the number of the top face: if the number
on the top face of the die is 2, 3, 4, or 5 then the dash indicates the position of
the face with number 1; if the number on the top face is 1 or 6 then the dash
indicates the position of the face with number 2. For example the state of the
die in Figure 1 is 5 : a five with the small dash placed downward.

The state graph G has a vertex for each possible state of the die and an
edge for each possible transition between two states, i.e. an edge represent two
adjacent cells for which it is possible to roll a die from one cell to the other
respecting the orientations. The moves are bidirectional, so the state graph is
undirected.

Valid rolling paths, i.e. the edges of the state graph, are represented with
colored blue lines (an example is shown in Figure 2).

The two rules of the puzzle that a labeled cell can be visited only once and
that the die must return to its starting location after visiting all the cells, can
be used to easily exclude some rolling paths and reduce the state graph.

For example if the state graph contains a vertex of degree 2, then a Hamil-
tonian cycle has only one way of visiting it. A chain of the state graph is a path
where all vertices except the first and the last have degree 2; these chains must
appear in any Hamiltonian cycle, so we say that the edges of chain are forced.

We will use the two reductions elimination and cutting defined in [2]:

1. Elimination: if a vertex is incident to two forced edges, remove all other
incident edges;
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2. Cutting: if the two endpoints of a chain are also connected by an edge,
remove the edge.

We can apply these two reductions exhaustively on G to get a simpler sub-
graph G′ but such that G′ has a Hamiltonian cycle if and only if the original
graph G does.

Valid rolling paths after elimination and cutting are represented with red
lines (an example is shown in Figure 3).

In summary:

• bold number: label of the cell;

• small dash: the small dash placed near the labels shows the allowed die
orientation (up, left, right, bottom);

• blue line: rollable path(s);

• red line: rollable path(s) after elimination and cutting reductions [2];

• white cells: blocked (unrollable) cells.

Figure 2: A labeled board with some blocked cells.

Figure 3: The same board of Figure 2 after elimination and cutting.

3 Hamiltonian cycles are not unique even in fully
labeled boards

Nonuniquess of Hamiltonian cycles for boards with labeled and blocked cells
has been showed in [2]. But nonuniqueness of Hamiltonian cycles holds also for
fully labeled boards without blocked cells.
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Proposition 3.1. There are full labeled boards in which rollable Hamiltonian
cycles are not unique.

Proof. Figure 4 shows a board without free cells and without blocked cells, that
has two distinct Hamiltonian cycles.

Figure 4: Full labeled board with two distinct Hamiltonian cycles.

4 Some gadgets

In the next sections we will use a smaller 16× 9 board with some blocked cells
that nevertheless has two Hamiltonian cycles (see Figure 5) and we will call it
basic gadget. We label the cells placed in the middle of the left, top, bottom
and right border (E1, E2), (F1, F2), (G1, G2) and (H1, H2) respectively.

If we extend the basic gadget by placing two labeled cells above the cells
(F1, F2), two labeled cells below the cells (G1, G2), and two labeled cells beside
the cells (E1, E2) we obtain the extended board in Figure 6.

We can observe that the two pairs of cells (F1, G1) and (F2, G2) act like a
switch.

• if the die uses one of the top cells F1 or F2 to enter or exit the basic gadget
(or rolls over them), then it will not be able to use the corresponding
bottom cell G1 or G2 (or both) to enter or exit the gadget;

• if the die uses one of the bottom cells G1 or G2 to enter or exit the
basic gadget (or rolls over them), then it will not be able to use the
corresponding top cell G1 or G2 (or both) to enter or exit the gadget.
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Figure 5: Basic gadget with some blocked cells and its two possible Hamiltonain
cycles.

Figure 6: First attempt to extend the basic gadget. Cells (F1, G1) and (F2, G2)
act like a switch.
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The proof is done by enumerating the possible rolls of a die that starts
outside of the border and enters the basic gadget (see Appendix A.1).

If we apply the elimination and cutting algorithm [2], and remove cells with
degree 2, we can represent the choice gadget with the simpler planar graph
shown in Figure 7. We will use this simpler graph to represent the more complex
gadgets.

Figure 7: A graph representation of the basic gadget.

4.1 Choice gadget

We will need to stack two basic gadgets vertically without any cells between
them, but this is not possible due to the number configuration of the top and
bottom borders. So we can slighty modify it adding some cells above and below,
but keeping the same rolling properties. We obtain the choice gadget shown in
Figure 8.

The possible rolls of a die that starts outside of the border and enters the
choice gadget are shown in Appendix A.2 and are equivalent to those found for
the basic gadget.

Two choice gadgets can be stacked simply starting from cells (G1, G2) of a
choice gadget and mimic a die roll that “draws” another choice gadget below
it. The border between them is showed in Figure 9. If we apply the elimination
and cutting algorithm the only way for a die to cross the border is through cells
G1 ↔ F1 or G2 ↔ F2 (it cannot roll along the vertical paths colored in blue).
So we can still represent a choice gaget using the graph in Figure 7.

4.2 T-gadgets

If we arrange six choice gadgets in a 3 × 2 larger grid and connect them hori-
zontally through cells (E1, E2), (H1, H2), and vertically through cells (F1, F2),
(G1, G2), we obtain the gadget in Figure 10 (the equivalent graph is shown
in Figure 11). The lower choice gadgets don’t need to be connected, so their
bottom border corresponds to the bottom border of the basic gadget.

With this configuration we can exploit the mutual exclusion property of the
cells F1, G1 and F2, G2 of the choice gadgets: in order to completely roll the
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Figure 8: The choice gadget; yellow cells correspond to the original basic gadget.

Figure 9: The border between two stacked choice gadgets. After applying the
elimination and cutting algorithm, the only way for a die to cross the border is
through cells G1 ↔ F1 or G2 ↔ F2 (blue edges are discarded).
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Figure 10: Six choice gadgets arranged in a 3 × 2 larger grid and linked hori-
zontally and vertically.

Figure 11: A graph equivalent to the six choice gadgets arranged in a 3 × 2
larger grid.
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gadget in Figure 11, the die must enter through one of the top choice gadgets,
suppose it enters from A. For the property of the choice gadget, it cannot go
down to D and it must roll on the right to B. In order to complete the three
lower choice gadgets, the die must choose to go to choice gadget E or F from the
top, if it chooses E, then it can completely roll the three lower choice gadgets
(D,E, F,) and can return to B from E (if it chooses to go from F to C, then it
cannot go up from C). At this point the die cannot go up from B, so it must
roll to C and from C it can go up and roll another part of the gadget and then
return back to complete C,B and A. The complete sequence is:

OUT->A->B->E->D!->E->F!->E!->B->C->OUT->C!->B!->A!->OUT

(the exclamation mark indicates when the choice gadget is completely rolled).
By rotating and rearranging the gadget of Figure 10, we can build four

T-gadgets in which the central choice gadget is oriented respectively upward,
downward, rightward, or leftward. The graph representation of the upward T-
gadget is showed in Figure 12a. For better clarity, in each T-gadget we will
label:

• L1, L2 the cells F1, F2 of the leftward choice gadget;

• U1, U2 the cells F1, F2 of the upward choice gadget;

• R1, R2 the cells F1, F2 of the rightward choice gadget;

• D1, D2 the cells F1, F2 of the downward choice gadget;

We well call these cells iterface cells.
In order to build a T-gadget we need a 138×138 labeled board with blocked

cells. The number configurations on the borders are such that the T-gadgets can
be combined horizontally and vertically: a die can roll between interface cells
L1 ↔ R1, L2 ↔ R2, U1 ↔ D1, U2 ↔ D2. See Appendix A.3 for an example
and more details.

4.3 Link-gadgets

In addition to the T-gadgets, we will need six more link-gadgets; each one is
built using two choice gadgets connected together through cells (E1, E2) and
(H1, H2) and oriented respectively: leftward/upward, upward/rightward, right-
ward/downward, downward/leftward, leftward/rightward, upward/downward
(see Figure 13).

Every link-gadget can fit in a 138 × 138 labeled board with blocked cells.
The number configurations on the borders are such that the link-gadgets can
be combined horizontally and vertically (and can be combined with T-gadgets
as well): a die can roll between cells L1 ↔ R1, L2 ↔ R2, U1 ↔ D1, U2 ↔ D2.
See Appendix A.4 for more details.
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Figure 12: The graph representation of the upward T-gadget (a), and downward,
rightward, leftward T-gadgets (b).
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Figure 13: Graph representation of the six link-gadgets: left/right (a),
right/down (b), down/left (c), up/down (d), up/right (e) and left/up (f).
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4.4 Endpoint-gadgets

We will also use four endpoint-gadgets: a few labeled cells placed on one of the
four sides of a 138 × 138 board (see Figure 14). The endpoints will be used to
make a direct “rollable shortcut” between the cells L1 and L2 (or R1 and R2, or
U1 and U2, or D1 and D2) of a larger t-gadget or link-gadget. See Appendix A.5
for more details.

Figure 14: Graph representation of the four endpoint-gadgets: left (a), right
(b), up (c), down (d).

5 Main theorem

We use the gadgets to mimic a grid graph traversal with a rolling die.

5.1 Grid graphs

The Hamiltonian Path problem (HP) is NP-complete for various classes of
graphs including grid graphs with degree ≤ 3 [6] (see Figure 15). In partic-
ular the problem “Given a grid graph G with degree ≤ 3 does an Hamiltonian
path without specified endpoints exist?” is NP-complete.

A grid graph G = (V,E) is a node-induced finite subgraph of the (infinite)
grid, i.e. V ⊂ Z × Z, and E = {{(x, y), (x′, y′)} : (x, y), (x′, y′) ∈ V and |x −
x′|+ |y − y′| = 1}.

Figure 15: Grid graph with degree ≤ 3.
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5.2 Simulating a traversal of a grid graph

Given an w × h grid graph G in which every node ni, 1 ≤ i ≤ m = w × h has
degree deg(ni) ≤ 3, we build labeled board B of size 138w × 138h. For every
node n at coordinates (x, y) x ∈ [0..w − 1], y ∈ [0..h− 1] in the grid G, we put
a gadget at coordinate (138x, 138y) in B; in particular we use:

• a T-gadget if deg(n) = 3 (oriented according to the three edges incident
to n);

• a link-gadget if deg(n) = 2 (oriented according to the two edges incident
to n);

• an endpoint if deg(n) = 1 (oriented according to the single edge incident
to n);

For example, the grid graph of Figure 15 is transformed to a labeled board
equivalent to the graph in Figure 16.

5.3 NP-completeness

Theorem 5.1. Given a w × h grid graph G with degree ≤ 3, we can build in
polynomial time a corresponding labeled board B with blocked cells replacing each
node ni, i ∈ [1..m] with a gadget gi of type:

• T-gadget if deg(n) = 3;

• link-gadget if deg(n) = 2;

• endpoint-gadget if deg(n) = 1.

The graph G has an Hamiltonian path if and only if the board B is rollable.

Proof(→). Suppose that G has an Hamiltonian path s1 → s2 → ... → sm.
We can put the die in a cell of the gadget g1 corresponding to node s1, and
roll it through the gadgets g2, g3, ..., gm corresponding to the nodes s2, s3, ..., sm
following the Hamiltonian path. Then we can roll back through the gadgets in
reverse order gm−1, gm−2, ..., g1 and complete the Hamiltonian cycle.

By construction the gadgets are fully rollable, and a die in gadget gi−1
can enter an adjacent gadget gi, partially roll it and continue to gadget gi+1

through a pair of interface cells; then it can re-enter gadget gi through the same
pair of interface cells, complete it and return back to gadget gi−1. Each node
si ∈ G with deg(si) = 3 is visited only once (only two edges are used), and this
guarantees that the die uses only two pairs of interface cells and can fully roll
the corresponding T-gadget gi (it cannot use all the three pairs).

Proof(←). Suppose that the board B is rollable (i.e. has an Hamiltonian cycle
that visits all its labeled cells). The die can roll from gadget gi to the adjacent
gadget gj only through a pair of interface cells and must re-enter through the
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Figure 16: The graph representation of the reduction from the grid graph in
Figure 15 to a labeled board.
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same pair ((L1, L2) ↔ (R1, R2) or (U1, U2) ↔ (D1, D2)) otherwise there is no
way way to completely roll gi. The two pairs correspond to the edge (si, sj)
between the two adjacent nodes si and sj of the graph G. Furthermore, in
each gadget only two pairs of interface cells can be used (only one pair in the
endpoint-gadgets). We can take the set P of edges in G corresponding to the
pairs of interface cells crossed by the die in its cycle. We observe that:

• the die must visit all the gadgets, so for every node si of G there is at
least one edge (si, sj) ∈ P ;

• a node si cannot be contained in three distinct edges in P otherwise
in the corresponding gadget gi three pairs of interface cells are crossed:
{si, sj}, {si, sk}, {si, sh} ∈ P ⇒ sj = sk ∨ sj = sh ∨ sk = sh;

• there is no way for the die to “jump”: all the gadgets (and the correspond-
ing nodes of G) are connected.

So the set P forms a path that visits all the nodes of G once.

From the NP-completeness of Hamiltonian path on grid graphs with degree
≤ 3 and without specified endpoints we can derive the NP-completeness of the
die rolling problem over a labeled board with blocked cells.

Corollary 5.2. Rolling a die over a labeled grid without free cells and with
blocked cells is NP-complete.

6 Conclusion

We proved that in the rolling cube puzzle Hamiltonian cycles are not unique
even in fully labeled boards and deciding if a solution exists in labeled boards
without free cells and with blocked cells is NP-complete.

The complexity of the puzzle in labeled boards without free cells and without
blocked cells is still an open problem.

A Gadgets details

A.1 Rolls over the first basic gadget extension

If we suppose that the die can enter or exit only through cells E1, E2, F1, F2, G1, G2,
then the rolls that fully visit the inner basic gadget are (see Figure 17):

1) OUT<->E1<->E2<->OUT

2) OUT<->F1<->F2<->OUT

3) OUT<->E1<->F1<->OUT<->F2<->E2<->OUT

4) OUT<->E1<->G2<->OUT<->G1<->E2<->OUT

5) OUT<->E1<->F1<->OUT<->G2<->E2<->OUT
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6) OUT<->E1<->F2<->OUT<->G1<->E2<->OUT

7) OUT<->F2<->G1<->OUT

8) OUT<->G1<->G2<->OUT

9) OUT<->F1<->G2<->OUT

If we add the cells H1, H2 on the right border, we get nine additional rolls.

A.2 Rolls over the choice gadget

Three rolls over the choice gadget are shown in Figure 18. Other rolls can be
obtained by mirroring the paths horizontally and vertically, or adding the cells
H1, H2 on the right border. In all cases, the pairs F1, G1 and F2, G2 act like a
switch as they do in the basic gadget.

A.3 T-gadgets details

The upward T-gadget is shown in Figure 19.
The rolls over a T-gadget have been tested using Mathematica 8. The T-

gadget of Figure 10 has been converted to graphml format (http://graphml.
graphdrawing.org/) after applying the elimination and cut algorithm. The file
file can be downloaded from:

• http://www.fractalmuse.org/rollingcubenpc/t-gadget.graphml

The id of the nodes are n<x> <y>, where x is the horizontal coordinate
[0..137] in the grid, and y is the vertical coordinate [0..137] except for the in-
terface cells which have id: L1, L2, U1, U2, D1, D2. The nodes are labeled
with the corresponding number [1..6] except for the interface cells which are
labeled: L1, L2, U1, U2, D1, D2. The T-gadget can be displayed correctly
with the free graph editor yEd (http://www.yworks.com/en/products_yed_
about.html).

For example to test that the T-gadget can be fully rolled if the die enters
from L1 and exits from L2, we can load the .graphml file in Mathematica, add
a node OUT1, add two undirected edges L1 ↔ OUT1 and OUT1 ↔ L2 and use
the FindHamiltonianCycle function:

g = Import["t-gadget.graphml", "Graph"];

g = VertexAdd[g, "OUT1"];

FindHamiltonianCycle[EdgeAdd[g, {"L1" <-> "OUT1", "OUT1" <-> "L2"}]]
Answer: {edgelist}

The possible valid rolls found are:

L1<->OUT1, OUT1<->L2: YES

U1<->OUT1, OUT1<->U2: YES

R1<->OUT1, OUT1<->R2: YES

L1<->OUT1, OUT1<->L2, U1<->OUT2, OUT2<->U2: YES
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L1<->OUT1, OUT1<->L2, R1<->OUT2, OUT2<->R2: YES

U1<->OUT1, OUT1<->U2, R1<->OUT2, OUT2<->R2: YES

L1<->OUT1, OUT1<->U1, L2<->OUT2, OUT2<->U2: YES

L1<->OUT1, OUT1<->R1, L2<->OUT2, OUT2<->R2: YES

R1<->OUT1, OUT1<->U1, R2<->OUT2, OUT2<->U2: YES

So, a T-gadget can be fully rolled only if the die uses at most two pairs of
interface cells. An example is shown in Figure 20.

A.4 Link-gadgets details

The left/right link-gadget is shown in Figure 21. The rolls that fully visit the
left/right link-gadget are:

1) OUT<->L1<->L2<->OUT

2) OUT<->L1<->R1<->OUT<->R2<->L2<->OUT

3) OUT<->R1<->R2<->OUT

The first two rolls are shown in Figure 22. The possible rolls over the other
link-gadgets are similar.

A.5 Endpoint-gadgets details

The four endpoints-gadgets are shown in Figure 21.
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Figure 17: Rolls over basic gadget; cells F1, G1 and F2, G2 act like a switch.
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Figure 18: Rolls over the choice gadget; other rolls can be obtained by mirroring
the paths horizontally and vertically.

Figure 19: Upward T-gadget that fits in a 138×138 labeled board with blocked
cells.

19



Figure 20: An example of a complete roll over the T-gadget
OUT1->L1->U2->OUT->U1->L2->OUT; the interface cells R1 and R2 cannot
be crossed.

Figure 21: Left/right link-gadget that fits in a 138 × 138 labeled board with
blocked cells.
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Figure 22: Two rolls over the left/right link-gadget.

Figure 23: The four endpoints-gadgets (yellow area) and how they are connected
to the T-gadgets or link-gadgets.
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