
The Complexity of Camping

Marzio De Biasi
marziodebiasi [at] gmail [dot] com

July 2012
Version 0.04: a re-revised sketch of the proof

Abstract

We prove that the tents puzzle game is NP -complete using a reduc-
tion from planar 3SAT.

1 Introduction

Tents is an addictive paper game that can be found in many puzzle magazines
and is also available on several online games sites [6].

You have a grid of squares, some of which contain trees. Your aim is to
place tents in some of the remaining squares, in such a way that the following
conditions are met:

• There are exactly as many tents as trees.

• The tents and trees can be matched up in such a way that each tent is
directly adjacent (horizontally or vertically, but not diagonally) to its own
tree. However, a tent may be adjacent to other trees as well as its own.

• No two tents are adjacent horizontally, vertically or diagonally.

• The number of tents in each row, and in each column, matches the numbers
given round the sides of the grid (hints).

An example of a solved game is shown in Figure 1.
In line with the recent interest in the complexity of puzzle games [4] [1], we

study how hard it can be to solve a tents game.
In Section 2 we formally define the decision problem associated to the puzzle

game; in Section 3 we briefly describe the planar 3SAT NP -complete problem;
in Section 4 we describe the gadgets that can be used to reduce a planar 3SAT
problem to a tent game and we prove that it is NP -complete.

1



Figure 1: A solved tents game.

2 Definitions

To underline the role of the hints – i.e. the number of tents that must be
placed on each row and each column — we define two slightly different decision
problems:

Definition 2.1. decision problem TENTS WITHOUT HINTS :

Instance: A tents game, i.e.: an n × n grid with m trees placed on it at
coordinates (x1, y1), ..., (xm, ym).

Question: Does a valid solution for the game exist? I.e. can we place m
tents in such a way that each tent is associated with exactly one tree and is
adjacent to it (horizontally or vertically but not diagonally) and no two tents
are adjacent horizontally, vertically or diagonally?

A solution of the game is simply a list of m integers : (d1, d2, ..., dm), di ∈
{1, 2, 3, 4}; where di = 1 (respectively 2, 3, 4) if the tent associated with the i-th
tree is placed on its left (respectively right, top, bottom) side.

Definition 2.2. decision problem TENTS (with hints) :

Instance: A tents game, i.e.: an n × n grid with m trees placed on it at
coordinates (x1, y1), ..., (xm, ym), the number of tents r1, r2, ..., rm that must be
placed on each row and the number of tents c1, c2, ..., cm that must be placed
on each column.

Question: Does a valid solution for the game exist? I.e. can we place m
tents in such a way that each tent is associated with exactly one tree and is
adjacent to it (horizontally or vertically but not diagonally); no two tents are
adjacent horizontally, vertically or diagonally; for each i the number of tents in
row i is equal to ri and for each j the number of tents in column j is equal to
cj?

2



2.1 Elements of the game

In Figure 2 we show the elements of the game and some graphic notations that
will be used in the following of this paper:

empty cell : an empty cell of the grid;

tree : a cell with a tree;

tent : a cell with a tent;

tree+tent : a tree and its associated tent (connected with a segment);

red cross : in a particular game configuration, red crosses will denote cells
that cannot contain a tent without violating the rules of the game;

highlighted cells : the highlighted cells or I/O cells are normal cells, but they
will behave like the input/output signals of a logic gate.

Figure 2: Elements of the game and notation: a) empty cell; b) tree; c) tent; d)
a tree and its associated tent; e) a cell that cannot contain a tent; f) highlighted
cells (I/O cells).

We call a tree configuration a particular portion of the grid of a tent puzzle
that has only one or a restricted number of valid ways to assign the tents to the
trees. Figure 3 shows several types of tree configurations:

• A fixed configuration (a1): there is only one valid way to place the tents
near the trees; the cells marked with a red cross cannot contain a tent.
The configuration can be extended horizontally (a2).

• A configuration in which the middle tree has only two possible valid tent
assignments: a tent in cell L (b1) or a tent in cell R (b2).

• In order to free cell L (c1), the tents must be “shifted” to the right, but
the cell R marked with the red cross must be free (c2).

3 Planar 3-SAT

A CNF formula is planar if the bipartire graph between clauses and literals
plus all edges (xi, x̄i) form a planar graph.

For example the planar graph corresponding to the planar CNF formula:

(x1 ∨ x̄2 ∨ x3) ∧ (x2 ∨ x̄3 ∨ x4) ∧ (x3 ∨ x4 ∨ x̄5)

3



Figure 3: Several types of tree configurations.

is shown in Figure 4.
The problem of deciding whether a planar CNF formula is satisfiable or

not is NP -complete [5] and it remains NP -complete even with the additional
constraint that each clause must contain exactly three literals (planar 3SAT ).

Figure 4: A planar 3CNF formula (x1∨ x̄2∨x3)∧ (x2∨ x̄3∨x4)∧ (x3∨x4∨ x̄5).

4 Complexity

The solutions of both problems can be checked in polynomial time:

Theorem 4.1. TENTS WITHOUT HINTS and TENTS are in NP

Proof. Given a game solution, its validity can be easily checked in polynomial
time: check that the solution has exactly m elements, check that every tent

4



is in a valid position i.e. on an empty space, check that tents do not overlap
and that they are not adjacent horizontally, vertically or diagonally. If n is the
size of the grid, the steps above can be done in O(n2). Finally - in the TENTS

problem - check that the number of tents on each row and each column matches
the corresponding hint (O(n2)).

Now, we examine some tree configurations (we will call them gadgets) and
the valid ways in which we can place the tents around them, but without taking
into account the hints.

4.1 Gadgets and links

Using the basic configurations we are able to build the following four gadgets:

• The AND gadget is shown in Figure 5a: in order to free the topmost
highlighted cell U , we need to be able to shift a tent to both the bottom-
left highlighted cell L and the bottom-right highlighted cell R.

• The OR gadget is shown in Figure 5b: in order to free the topmost high-
lighted cell U , we need to be able to shift a tent to the bottom-left high-
lighted cell L or to the bottom-right highlighted cell R (or both).

• The CHOICE gadget is shown in Figure 6a: at most one of the two
highlighted cells L or R can be empty.

• The TURN gadget is shown in Figure 6b: same as CHOICE, but it makes
a 90 degree turn.

In order to better understand the behaviour of the gadgets, the four figures
also display a valid tent assignment, but each gadget should be considered as
a tree configuration without any tent. All gadgets are built using a 15 × 15
subgrid and can be rotated 0, 90, 180 or 270 degrees.

(a) AND gadget. (b) OR gadget.

Figure 5: AND and OR gadgets

5



(a) CHOICE gadget. (b) TURN gadget.

Figure 6: CHOICE and TURN gadgets

We will also used a FIXED gadget that is a simple four tree configuration
that forces a tent in its I/O cell (see Figure 7).

Figure 7: The FIXED gadget that forces a tent in its I/O cell.

The gadgets has also been checked with a constraint solver program to verify
the valid configurations for the gadgets; Table 1 summarizes the results and
Figure 8 show a schematization of the gadgets and their possible valid I/O cells
configurations.

Combining the gadgets (without the tents) horizontally or vertically we can
build a larger tent game. When two gadgets are adjacent two of their I/O cells
can be adjacent, in this case both cannot contain a tent. We can interpret the
I/O cells like a digital signal 1 or 0: when two I/O cells are adjacent the signal is
negated (NOT gate) and propagated from one gadget to another. The I/O cells
of the gadgets can also be connected using CHOICE gadgets (that can behave
like straight links) and TURN gadgets.

4.2 Reduction from a planar 3CNF graph

Given a planar 3CNF graph G we can build a corresponding tent game T in
the following way:

• For each pair of literals (xi, x̄i) we add a CHOICE gadget. Only one of
its two I/O cells can be empty: L = 0 will represent a true assignment to
the variable xi, R = 0 will represent a false assignment to the variable xi.
We call Xi and X̄i the two I/O cells. If the literals have more than one

6



Gadget U L R Valid
AND 0 0 0 NO

0 0 1 NO
0 1 0 NO
0 1 1 YES
1 0 0 YES
1 1 0 YES
1 1 1 YES
1 1 1 YES

OR 0 0 0 NO
0 0 1 YES
0 1 0 YES
0 1 1 YES
1 0 0 YES
1 1 0 YES
1 1 1 YES
1 1 1 YES

CHOICE 0 0 NO
0 1 YES
1 0 YES
1 1 YES

TURN 0 0 NO
0 1 YES
1 0 YES
1 1 YES

Table 1: Valid configurations for the gadgets. A one means that a tents is
present in the cell, a zero means that the cell is empty.

incident edge we can use one or more AND gadgets to split the signal into
X1

i , X
2
i , ... distinct I/O cells with the following property: if Xi = 1 then

all the Xs
i I/O cells of the AND gadgets must hold a tent (Figure 9).

• For each clause Cj = (Xj1 ∨ Xj2 ∨ Xj3) of the 3CNF formula, we add
two OR gadgets and link the two I/O cells R1 and U2 together. Using a
FIXED gadget we force the topmost I/O cell U1 = 0; in this way at least
one of the bottom three I/O cells must hold a tent: L1 = 1 or L2 = 1
or R2 = 1 (Figure 10). We call Oj1 , Oj2 , Oj3 the three bottom cells that
represent the three litearls of clause Cj .

• We link the Ojk to the corresponding I/O cell Xi or X̄i using links and
turns.

A tents puzzle that corresponds to the planar 3CNF formula of Figure 4 is
schematized in Figure 11.

7



Figure 8: A schematization of the valid configurations of the I/O cells in the
AND, OR, FIXED, CHOICE and TURN gadgets

Figure 9: A CHOICE gadget that represent the truth assignment of a variable
(empty Xi represents xi = true); and an adjacent AND gadget that is used to
split the I/O cell X̄i corresponding to literal x̄i.

8



Figure 10: Two linked OR gadgets that represent a clause in the planar 3CNF
formula. One of the three bottom I/O cells (L1, L2, R2) must hold a tent.

Figure 11: A schematized tents puzzle that corresponds to the planar 3CNF
formula (x1 ∨ x̄2 ∨ x3) ∧ (x2 ∨ x̄3 ∨ x4) ∧ (x3 ∨ x4 ∨ x̄5) of Figure 4.

9



4.3 Tents without hints

Theorem 4.2. TENTS WITHOUT HINTS is NP-hard

Proof. Given an istance of planar 3SAT, we can build the planar graph G of
its 3CNF formula in polynomial time and then use the gadgets to build an
equivalent TENTS WITHOUT HINTS game T .

If (v1,2 , ..., vn) is a satisfying assignment for φ then we can build a valid
solution for T in this way: if vi = true we leave empty the I/O cell Xi of the
CHOICE gadget and if the signal is splitted with some AND gadgets the I/O
cells X1

i , X
2
i , ... can also be left empty. This allows us to make a valid tent

assignment to all the OR gadgets that are linked to Xi. On the opposite side
X̄i must hold a tent and if it is splitted every X̄1

i , X̄
1
i , ... must also hold a tent.

So an I/O cell of an OR gadget linked to X̄i must be empty, but this is not a
problem because the same OR gadget will have another I/O cell linked to the
literal that makes the corresponding clause true and that can contain a tent.
If vi = false the reason is similar. The literals cannot be true and false at the
same time, so given a satisfying assignment for φ we can build a valid solution
for T .

From a valid solution of T we can build a satisfying assignment for φ in this
way: at least one I/O cell of each OR gadget must hold a tent; if the cell is linked
to Xi then we set xi = true; otherwise if it is linked to X̄i we set xi = false. If
there are xi left out, we can assign them an arbitrary value. By construction if
an I/O cell of an OR gadget is linked to Xi then all I/O cells of the OR gadgets
linked to X̄i must be empty so there cannot be conflicts between the values
assigend to the xi. Thus (v1, v2, ..., vn) is a valid satisfying assignment for φ.

Hence the planar 3SAT problem has a solution if and only if the correspond-
ing tent game has a solution.

A solution of the tents puzzle that corresponds to a satisfying assignment
of the planar 3CNF formula of Figure 4 is schematized in Figure 12.

4.4 Making dummy hints

If we add the hints to the formulation of the decision problem (see Definition 2.2
of the TENTS problem), we certainly don’t get a harder problem; but, in order
to keep the reduction from planar 3SAT valid, we must find a way to build
hints without knowing the solution of the game and keeping the constraint that
a valid solution for the game exists if and only if the original problem has a
solution.

The idea is to extend the game and add dummy trees configurations on
the borders. For each dummy trees configuration more than one valid tent
assignment exists, and they are placed in correspondence of the tent assignments
that can occurr in the gadgets in order to “mask” them.

For example suppose that in a gadget there is a tree at coordinates (i, j),
and its tent tk can be placed above or below it (Figure 13.a1). Then it is enough

10



Figure 12: A schematized tents puzzle solution that corresponds to a satisfying
assignment of the planar 3CNF formula (x1∨x̄2∨x3)∧(x2∨x̄3∨x4)∧(x3∨x4∨x̄5)
of Figure 4: x1 = True;x2 = True;x3 = False;x4 = False, x5 = false.

to add a new column n+ 1 to the game and place a single dummy tree on the
same row i. Then we add +1 to the number (hint) ri−1 of tents in row i − 1;
+1 to the number ri+1 of tents in row i + 1; and +2 to both cj and cn+1 (the
number of tents in columns j and n + 1). Whatever the final position of tk is,
there is a valid tent assignment to the dummy trees configuration that keeps
the hints constraints satisfied (Figure 13.a2-a3).

In a similar way, dummy trees configurations can be added for tents that
can shift from the top of their tree to their left (Figure 13.b1-b3), but in this
case we need to add two new columns and two new rows. And the same idea
is also used for tents that can shift from the top of their tree to their left or
right (Figure 13.c1-c4), but in this case we need to add two new columns and
five new rows.

Note that in order to avoid conflicts among the tents of the dummy trees
configurations we can simply add two extra empty columns and two extra empty
rows after each dummy trees configuration.

Theorem 4.3. TENTS (with hints) is NP-hard

Proof. We can reduce in polynomial time a planar 3SAT problem to a tents

game as seen above. In order to calculate the hints we first sum the unmoveable
tents, then for each moveable tent we expand the grid, add the corresponding
dummy trees configuration and update the values of the hints. At most m
expansions can occurr and each one of them add a fixed number of columns
and trees, so the whole reduction can still be done in polynomial time. Like in
the TENTS WITHOUT HINTS problem the game has a solution if and only if the

11



Figure 13: Dummy trees configurations (white trees) that keep the hints valid
whatever tent assignment is made to the trees that belongs to the gadgets. The
numbers represent the quantity that must be added to the hints. Asterisks
represent the rows or columns that must be added.

12



original planar 3SAT problem has a solution, and the hints constraints are kept
satisfied by construction.

Finally, from Theorem 4.1 and Theorem 4.3 it follows that:

Corollary 4.4. TENTS is NP-complete

5 Conclusion

We proved that camping can be tricky!

It would be interesting to consider a classical NP -complete problem like the
Hamiltonian circuit problem on grid graphs [3] and verify that its complexity
doesn’t change in the presence of hints similar to those found in the tents

game, i.e. a number that is associated to every horizontal and vertical line
that crosses the grid graph and that represents the number of edges of the
Hamiltonian circuit that intersect that line.

References

[1] Erik D. Demaine and Robert A. Hearn. Playing games with algorithms:
Algorithmic combinatorial game theory. In Michael H. Albert and Richard J.
Nowakowski, editors, Games of No Chance 3, volume 56 of Mathematical
Sciences Research Institute Publications, pages 3–56. Cambridge University
Press, 2009.

[2] Robert A. Hearn and Erik D. Demaine. Games, puzzles and computation.
A K Peters, 2009.

[3] Alon Itai, Christos H Papadimitriou, and Jayme Luiz Szwarcfiter. Hamilton
paths in grid graphs. SIAM Journal on Computing, 11(4):676–686, 1982.

[4] Graham Kendall, Andrew J. Parkes, and Kristian Spoerer. A survey of
np-complete puzzles. ICGA Journal, 31(1):13–34, 2008.

[5] David Lichtenstein. Planar Formulae and Their Uses. SIAM Journal on
Computing, 11(2):329–343, 1982.

[6] Simon Tatham. Tents. http://www.chiark.greenend.org.uk/~sgtatham/
puzzles/java/tents.html.

13


