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Abstract

We prove that the 3-Dimensional Matching problem remains NP–
complete if the matching can be built not only with triples (x, y, z) ∈M ⊆
{X×Y ×Z}, but also choosing one of their two corresponding pairs (x, y)
or (x, z). We also discuss some other variants of the problem.

1 Problem definition

The following variant of the 3-Dimensional Matching problem (3DM) was
posted on cstheory.stackexchange.com, a question and answer site for profes-
sional researchers in theoretical computer science and related fields:

Definition 1.1 (3-Dimensional Matching Variant, 3DMV).

Input: Set M ⊆ X × Y × Z where X,Y, Z are disjoint sets; we call MXY =
{(x, y) | ∃z s.t. (x, y, z) ∈M} the set of pairs of X×Y that appear in the triples
of M , and MXZ = {(x, z) | ∃y s.t. (x, y, z) ∈M} the set of pairs of X ×Z that
appear in the triples of M.

Question: Does there exist a set M ′ ⊆ M ∪ MXY ∪ MXZ such that every
element of X ∪ Y ∪ Z is included in a triple or a pair of M ′ exactly once?

Informally we want to build an exact cover of X∪Y ∪Z using the triples of M
or one of the two pairs (x, y), (x, z) that are contained in a triple (x, y, z) ∈M .

In the next section we prove that 3DMV is NP–complete.

2 NP-completeness proof

First it is easy to see that the problem 3DMV is in NP: given a solution we can
check that it is valid in polynomial time. We prove that it is NP–hard giving a
reduction from the NP–complete problem Set Cover [1]:
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Definition 2.1 (Set Cover, SC).

Input: An universe A of n elements: A = {a1, ..., an}, a collection of m subsets
S = {S1, S2, ..., Sm} (with Si ⊆ A) and an integer k.

Question: Does there exist a sub-collection C ⊆ S of size at most k (i.e.
|C| ≤ k) such that

⋃
Si∈C Si = A?

Given an instance of SC we will build in polynomial time an instance of
3DMV that has a solution if and only if the original instance of SC has a
solution. We will use the superscript x (resp. y, z) to denote an element of the
set X (resp. Y,Z). We will use dumy (resp. dumz) to denote an unique new
element that is included in the set Y (resp. Z).

We start adding n universe elements az1, a
z
2, ..., a

z
n to Z that correspond to

the elements of the set A. Then for each set Si = {ai1 , ai2 , ..., aiq} we build the
following set selector gadget :

• add q set elements Sx
i1
, Sx

i2
, ..., Sx

iq
to X, one selector element Ry

i and q

link elements Ly
i1
, Ly

i2
, ..., Ly

iq
to set Y ;

• add the triples:

ti1 : (Sx
i1
, Ry

i , dum
z) t′i1 : (Sx

i1
, Ly

i1
, azi1)

ti3 : (Sx
i2
, Ly

i1
, dumz) t′i2 : (Sx

i2
, Ly

i2
, azi2)

... ...
tiq : (Sx

iq
, Ly

iq−1
, dumz) t′iq : (Sx

iq
, dumy, aziq )

In order to include all the set elements Sx
i exactly once, one of the two triples

tij , t
′
ij

must be in M ′ (or one of the corresponding pairs), but not both. But

if we include the first triple (Sx
i1
, Ry

i , dum
z) (or one of the corresponding pairs

(Sx
i1
, dumz), (Sx

i1
, Ry

i )) the only way to include Ly
i1

is to include the triple ti3 ;
but if we include ti3 then the only way to include Ly

i2
is to include the triple ti4

and so on. In other words, if we “choose” ti1 then we cannot include any of the
azij included in the triple t′ij .

On the contrary, if we pick t′i1 , then we can also pick the triples t′i2 , t
′
i3
, ..., t′iq

and include all the universe elements azi1 , ..., a
z
iq

. Note that we can also decide

to include only some of them – e.g. (Sx
i1
, Ly

i1
),(Sx

i2
, Ly

i2
, azi2), (Sx

i3
, Ly

i3
), ... – and

this will let us handle the case in which some of the set selector gadgets included
in M ′ share some elements.

Figure ??fig:setselector shows an example of a simple set selector gadget.
We can force the constraint that at most k set selector gadgets can include

their elements azi adding exactly k new elements Ex
1 , ..., E

x
k to X and for each

Ex
j add m triples that link them to the selector element of the m set selector

gadgets:

e1,1 : (Ex
1 , R

y
1 , dum

z), ... e1,m : (Ex
1 , R

y
m, dumz)

e2,1 : (Ex
2 , R

y
2 , dum

z), ... e2,m : (Ex
2 , R

y
m, dumz)

...
ek,1 : (Ex

k , R
y
1 , dum

z), ... ek,m : (Ex
k , R

y
m, dumz)
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Figure 1: A simple set selector gadget for Si = {a5, a6, a7}, the triples are
represented with edges of the same color. On the left the valid matching (solid
red triples) when the triple ti1 = (Sx

i1
, Ry

i1
, dum) is choosen to include Sx

i1
; on

the right the valid matching (solid blue triples) than can be built if the selector
element Ry

i1
is included elsewhere; note that this matching allows to include the

universe elements {az5, az6, az7}

Finally we can add as many triples gu = (Gx
u, dum

y, Gz
u) or (Gx

u, G
y
u, dum

z)
as needed to garbage collect all the dumy

u, or dumz
u elements used in the con-

struction above.
Figure 2 shows an example of the 3DMV construction for a simple unsolv-

able Set Cover instance.
(⇒) Suppose that a valid solution M ′ exists for the 3DMV; then, in order

to include all the elements Ex
j , exactly k of the triples ejp above (or one of the

corresponding pairs) are included in M ′ . So at most k set selector gadgets are
used to include all the elements az1, a

z
2, ..., a

z
n in M ′. But, by construction, the

corresponding sets Si form a valid cover of A in the original SC problem.
(⇐) In the opposite direction, suppose that a valid solution Sl1 ∪ Sl1 ∪ ... ∪

Slk = A of the SC problem exists. We build a vaild solution M ′ for the 3DMV
problem picking the triples (Ex

i , R
y
i , dum

z) with i ∈ {l1, ..., lk}. This allows
us to include all the universe elements associated with the set selector gadgets
Sx
i , i ∈ {l1, ..., lk}, but the corresponding sets form a cover, so all elements azj

can be included. Furthermore as seen above if some sets have common elements,
they can be included only in one of them. The remaining set collector gadgets
corresponding to the sets Sr not included in the cover, can be included in the
matching M ′ using the triples tr1 , tr2 , .... Finally using the garbage collection
triples we can include all the dum elements exactly once: for example, if the
dumy

u element is already included in the solution M ′ then we can pick the pair
(Gx

u, G
z
u) instead of the full triple (Gx

u, dum
y
u, G

z
u).
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Figure 2: A simple example that shows the 3DMV construction correspond-
ing to the unsolvable Set Cover instance: k = 1, A = {a5, a6, a7}, S1 =
{a5, a6}, S2 = {a6, a7} (only two garbage collection triples are shown). Using
the triples containing the element Ex

1 we can decide to include in the matching
the universe elements {az5, az6} or {az6, az7}, but not all of them.
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3 Other variants

Note that if we add an integer k to the input and ask for a matching of size k or
more (|M ′| ≥ k), like in the 3DM problem, and not for an exact cover; then the
problem is solvable in polynomial time: indeed all the triples in M and the pairs
in MXY ,MXZ contain exactly an element of X, so the constraint is equivalent
to having k or more elements of X in M ′. But if M ′ is a valid matching of size
k or more and we replace a triple (x, y, z) of M ′ with a pair (x, y) or (x, z) we
get a valid matching M ′′ of the same size. So we can model our problem as
a 2-dimensional matching problem with pairs from the set A ⊆ X × (Y ∪ Z)
(note that Y,Z are disjoint) built in the following way: A = {(x, y) | ∃(x, y, z) ∈
M} ∪ {(x, z) | ∃(x, y, z) ∈M}; which is solvable in polynomial time.

Also note that if we require X,Y, Z having the same cardinality: |X| =
|Y | = |Z| and ask for an exact cover then the problem is equivalent to the
special case of 3DM in which k = |X| = |Y | = |Z|, which is again NP–complete
[1]. With the cardinality constraint, all valid solutions M ′ must contain only
triples: indeed M ′ must contain all the elements of X exactly once, so if it
contains a pair, for example (x, y), then the number of elements of Z included
in M ′ is |{(x, y, z) ∈ M ′}| + |{(x, z) ∈ M ′}| < |Z|, i.e. at least one member of
Z remins excluded.

Finally the following problem, which adds a relaxed matching condition to
the standard 2-dimensional matching problem, is also NP–complete:

Definition 3.1 (Relaxed 2-Dimensional Matching).

Input: Set T ⊆ X × Y where X,Y are disjoint sets; given a triple ti =
(xj , yp, yq), we define tLi = (xj , yp), tRi = (xj , yq) and TL =

⋃
i t

L
i , T

R =
⋃

i t
R
i .

Question: Does there exist a set T ′ ⊆ T ∪ TL ∪ TR such that every element of
X ∪ Y is included in a triple or a pair of T ′ exactly once?

The reduction from SC is analogous: we simply ignore the distinction be-
tween the sets Y and Z but still use distinct elements in the set Y of the
Relaxed 2-Dimensional Matching problem to represent universe elements,
selector elements and link elements.
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