Restriction of Exact Cover by 3-sets

Exact cover by 3-sets problem is defined as

Instance: a set $X=\left\{x_{1}, x_{2}, \ldots, x_{3 n}\right\}$ and a family $F=\left\{\left(x_{i_{1}}, x_{i_{2}}, x_{i_{3}}\right)\right\}$ of 3-elements subsets of X (triples);
Question: Is there a subfamily F^{\prime} of F such that every element in X is contained in exactly one triple of F^{\prime}.

It is known that Exact cover by 3-sets problem is NP-complete even if input is restricted such that each element of X appears exactly in three triples.

Is still NP-complete if the input is restricted further such that no pair of input triples share more than one element of X ?
cc.complexity-theory
edited Dec 31'13 at 12:04 asked Dec 31'13 at 11:40
Mohammad AI-Turkist
$\begin{array}{llll}7,173 & 2 & 17 & 66\end{array}$

I didn't check if the Bangye's solution is correct/simpler, but a quick transformation from RESTRICTED X3C (the name is the same used by Gonzales) to SINGLE OVERLAP RESTRICTED X3C (the name is invented) that should work is:

- Replace each subset $C_{j}=\left\{x_{1}, x_{2}, x_{3}\right\}$ adding 6 new elements $z_{j, 1}, z_{j, 2}, \ldots, z_{j, 6}$ and 5 new three elements subsets
$L_{j, 1}=\left\{x_{1}, z_{j, 1}, z_{j, 4}\right\}$,
$L_{j, 2}=\left\{x_{2}, z_{j, 2}, z_{j, 5}\right\}$,
$L_{j, 3}=\left\{x_{3}, z_{j, 3}, z_{j, 6}\right\}$,
$L_{j, 4}=\left\{z_{j, 1}, z_{j, 2}, z_{j, 3}\right\}$,
$L_{j, 5}=\left\{z_{j, 4}, z_{j, 5}, z_{j, 6}\right\}$.
like in the figure below (blue triples). Informally, the three elements originally in C_{j} are grouped and in order to include elements $z_{j, 1}, \ldots, z_{j, 6}$ the exact cover must include the group of triples $L_{j, 1}, L_{j, 2}, L_{j, 3}$ OR the two triples $L_{j, 4}, L_{j, 5}$, but not both.

At this point no pair of triples share more than one element and each element is included in exactly 3 triples; except elements $z_{j, 1}, \ldots, z_{j, 6}$ which are included only in two triples.

- In order to fix this it's enough to add a duplicate of every element element $x_{i} \rightarrow x_{i}^{\prime}, z_{i} \rightarrow z_{i}^{\prime}$, a duplicate of each triple containing x_{i} or z_{i} elements using the corresponding duplicated elements (green triples in the figure below) and for each original triple C_{j} add three new elements $t_{j, 1}, t_{j, 2}, t_{j, 3}$ and 7 new dummy subsets with elements:
$D_{j, 1}=\left\{z_{j, 1}, z_{j, 4}, t_{j, 1}\right\}$,
$D_{j, 2}=\left\{z_{j, 2}, z_{j, 5}, t_{j, 2}\right\}$,
$D_{j, 3}=\left\{z_{j, 3}, z_{j, 6}, t_{j, 3}\right\}$,
$D_{j, 4}=\left\{z_{j, 1}^{\prime}, z_{j, 4}^{\prime}, t_{j, 1}\right\}$,
$D_{j, 5}=\left\{z_{j, 2}^{\prime}, z_{j, 5}^{\prime}, t_{j, 2}\right\}$,
$D_{j, 6}=\left\{z_{j, 3}^{\prime}, z_{j, 6}^{\prime}, t_{j, 3}\right\}$,
$D_{j, 7}=\left\{t_{j, 1}, t_{j, 2}, t_{j, 3}\right\}$ (yellow triples in the figure below).

(\Rightarrow) Suppose that $\bigcup_{j \in A \subseteq\{1, \ldots, 3 n\}} C_{j}$ is an exact cover of the original RESTRICTED X3C instance. Then by construction:

$$
\bigcup_{j \in A}\left(L_{j, 1} \cup L_{j, 2} \cup L_{j, 3} \cup L_{j, 1}^{\prime} \cup L_{j, 2}^{\prime} \cup L_{j, 3}^{\prime} \cup D_{j, 7}\right) \cup \bigcup_{j \notin A}\left(L_{j, 4} \cup L_{j, 5} \cup L_{j, 4}^{\prime} \cup L_{j, 5}^{\prime} \cup D_{j, 7}\right)
$$

is an exact cover of SINGLE OVERLAP RESTRICTED X3C.
(\Leftarrow) Suppose that there exists an exact cover of the SINGLE OVERLAP RESTRICTED X3C instance. Every original element x_{i} must be included exactly once in the cover, but, as seen above, the only way to include an element x_{i} is by choosing a group of triples $L_{j, 1}, L_{j, 2}, L_{j, 3}$ that correspond to an original triple C_{j} that contains x_{i}. Furthermore if $L_{p}, L_{q}, p \neq q$ are included in the exact cover we have $L_{p} \cap L_{q}=\emptyset$. So the collection $L_{j, k}$ of subsets in the SINGLE OVERLAP RESTRICTED X3C exact cover correspond to a valid cover $\bigcup C_{j}$ of the original RESTRICTED X3C instance.

The reduction can be done in polynomial time, so we can conclude that SINGLE OVERLAP RESTRICTED X3C is NP-complete.

Just note that a SINGLE OVERLAP RESTRICTED X3C instance built using the above reduction can contain two valid and distinct exact covers of the original RESTRICTED X3C problem, but we are sure that if only one exact cover exists, it can be "mirrored" to form a valid exact cover of SINGLE OVERLAP RESTRICTED X3C.

Let me know if you need a more formal proof for a paper.

$$
\text { edited Jan } 3 \text { at 7:36 }
$$

answered Dec 31 '13 at 19:24

Marzio De Biasi
6,982 $111 \quad 3$

Thanks Marzio, I will give you my feedback on your reduction. - Mohammad Al-Turkistany Jan 1 at 13:26

Thanks Marzio for your nice reduction. Are you aware of other NP-completeness proofs that rely heavily on redundant encoding? - Mohammad Al-Turkistany Jan 6 at 11:25

Thanks :). For redundant encoding, do you mean something like the "duplicated elements trick" above? Marzio De Biasi Jan 6 at 12:34
@MohammadAl-Turkistany: P.S. I'm going to post it on my blog, too; my English is not so good, do you think that "SINGLE OVERLAP RX3C" is a good name? Or perhaps it's better "single overlapping RX3C" or "single share RX3C",...? - Marzio De Biasi Jan 6 at 12:42

Yes. I mean "duplicated elements trick". Regarding the name, I suggest Unique overlap restricted X3C
problem. - Mohammad Al-Turkistany Jan 6 at 19:05

