
Boulder Dash is NP–hard

Marzio De Biasi
marziodebiasi [at] gmail [dot] com

December 2011
Version 0.01: “... now the difficult part: is it NP?”

Abstract

Boulder Dash is a videogame created by Peter Liepa and Chris Gray
in 1983 and released for many personal computer and console systems
under license from First Star Software. Its concept is simple: the main
character must dig through caves, collect diamonds, avoid falling stones
and other nasties, and finally reach the exit within a time limit. In this
report we show that the decision problem ”Is an n × n Boulder Dash
level solvable?” is NP–hard. The constructive proof is based on a simple
gadget that allows us to transform the hamiltonian cycle problem on a
3-connected cubic planar graph to a Boulder Dash level.

1 Introduction

The videogame Boulder Dash [8] was created by Peter Liepa and Chris Gray
in 1984 and was originally released for the Atari 8-bit system in 1984 under
license from First Start Software, which still owns the rights to the game. It
was a great success, so it was soon ported on other personal computers (ZX
Spectrum, C64,...) and console systems (ColecoVision, NES,...); moreover it
gave origin to many sequels and clones. The most famous clones are Emerald
Mine by Voler Wertich, released for the Amiga personal computer, and the
various versions of Diamonds Caves by Peter Elzner, released for the Amiga,
MS-DOS and Windows.

1.1 Boulder Dash rules and objects

The game is subdivided into levels; each level is a n×m grid. Each cell of the
grid can be one of the following objects:

Rockford : the main character controlled by the player. Rockford can move
in one of the four directions: left, right, up, down, one cell at a time.

Space : space is just an empty cell. Rockford can freely move on space cells.

1

Dirt : dirt can serve for blocking and/or suspending other objects such rocks
or diamonds. Rockford can freely move on a dirt cell, but he clears it and
the cell becomes a space when he leaves it.

Wall : walls are unmovable and undestructable objects; Rockford cannot move
on them.

Rock : rocks are undestructable and Rockford cannot move on them, but he
can push a single rock horizontally if there is a space beside it. If the
dirt is removed from beneath, the rock falls until it reaches a solid ground
again. A rock can also roll off other rocks or walls if there is enough space.
If Rockford is hit by a falling rock, he dies and the level is restarted.

Diamond : diamonds are the items that Rockford must collect in order to
complete a level.

Exit door : at the beginning of a level, the exit door is closed. When Rockford
collects all the diamonds, the exit door opens and Rockford must reach it
to complete the level.

Figure 1: Game objects: Rockford, Space, Dirt, Wall, Diamond, Exit door.

The original game has other objects: Fireflies, Butterflies, Amoebas, Expand-
ing Walls, Magic Walls, Steel Walls; but we will not use them. Furthermore in
the original game, there is also a time limit for each level; but we will assume
that Rockford has unlimited time to collect the diamonds and reach the exit
door.

2 NP–hardness of a puzzle game

In complexity theory a decision problem is a problem expressed in some formal
system, for which the desired answer is yes or no. The complexity class P
contains all the decision problems that can be solved by a deterministic Turing
machine in polynomial time. The complexity class NP contains all the decision
problems whose solutions can be verified by a deterministic Turing machine in
polynomial time. The question if P = NP? is perhaps the major still-open
problem in computer science.

The NP–complete class of problems contains all decision problems such that
they are in NP and every other problem in NP is Karp reducible to them in
polynomial time: a problem A is Karp-reducible to a problem B if there is
a polynomial time algorithm that given as input an istance IA of problem A
produces as output an instance IB of problem B and the answer for IA is yes

2

iif the answer for IB is yes. For a complete introduction to NP–completeness
see the book of Garey and Johnson: ”Computers and Intractability” [3].

Many of the puzzle games that people play are interesting because they re-
quire intuition and logic reasoning to be solved. Most of them can be mathemat-
ical modeled and the difficulty of solving them is deeply tight to the complexity
of the corresponding decision problem.

For example the following puzzle games have been proved to be NP–complete
[5]: Sudoku, Kakuro, Instant insanity, Light up, Lemmings, Clickomania, Mas-
termind, FreeCell.

The NP–hard class of problems contains all decision problems that are ”at
least as hard as the hardest problems in NP”: a problem A is NP–hard if and
only if there is as NP–complete problem B that is polynomial time Turing-
reducible to A.

Some puzzles are even harder and are PSPACE–complete, the complexity
class of decision problems solvable by a Turing machine in polynomial space
and such that any other problem in PSPACE can be reduced to them. For
example Atomix [4], Rush Hour [1] and Sokoban [6] have been proved to be
PSPACE–complete.

3 Boulder Dash is NP–hard

We will prove that the decision problem ”Is an n× n Boulder Dash level solv-
able?” is NP–hard. The constructive proof is based on a polynomial reduction
from the NP–complete problem hamiltonian cycle on a 3-connected cubic planar
graph (3PHC) [2].

A graph is k-connected if there does not exist a set of k − 1 vertices whose
removal disconnects the graph. A planar graph is a graph that can be drawn
on te plane in such a way that its edges intersects only at their vertices. A cubic
graph is a graph in which all vertices have degree three. A 3-connected cubic
planar graph is at the same time 3-connected cubic and planar.

Figure 2: A 3-connected planar cubic graph.

3

A Hamiltonian cycle or Hamiltonian circuit in an undirected graph, is a
sequence of edges that forms a closed loop (the last vertex is also the starting
one) and visits each vertex exactly once. The decision problem of determining
whether a Hamiltonian Cycle exists in a given undirected graph is NP–complete.
The problem stays NP–complete even if the input graph is 3-connected planar
cubic (3PHC) [2].

A planar graph can be drawn on the plane in many different ways; a drawing
of a graph in which vertices and bends are located at grid points of an integer grid
is called a grid drawing. We will use a particular grid drawing called orthogonal
drawing : each edge is drawn on the grid as a chain of horizontal and vertical line
segments. An orthogonal drawing for 3-connected cubic planar graphs can be
found very efficiently in linear time [7]. Furthermore, the size of the resulting
othogonal drawing for a 3-connected cubic planar graph is polynomial in the
number of the nodes: if n is the number of nodes of the original graph, and
W ×H is the size of the resulting graph, we have W ≤ n

2 and H ≤ n
2 [7].

Figure 3: Othogonal drawing of the graph in Fig.2.

We recall that we will use only the following game objects: Rockford, Wall,
Dirt, Space, Rock, Diamond, Exit door ; we will also assume that the game has
no time limit.

Consider the following two ”gadgets” that are possible valid parts of a Boul-
der Dash level:

Node–gadget : the Node–gadget is an area made by solid walls, that has three
exits (left, up, and down). It contains a diamond, three rocks and some
dirt. The rocks are sustained by dirt, and it is easy to see that if Rockford
moves under one of them the rock falls and blocks the passage. Therefore,
in order to pick the diamond, Rockford must enter a Node–gadget through
one of the three passages, and exit from another one. He must pick the
diamond because it is placed in the crossing of the three passages. The
third passage remains free, but if Rockford uses it, he will be imprisoned
in the gate.

Start–gadget : the Start–gadget is similar to the Node–gadget but contains
no diamonds; it defines the Rockford starting position and the Exit door

4

Figure 4: Node–gadget and Start–gadget.

position. Rockford must leave the Start–gadget in order to get the dia-
monds (leaving two free passages); but can re-enter it only when all the
diamonds have been collected. If it tries to use the remaining two free
passages to reach other diamonds, the passages become blocked and the
Exit door cannot be reached anymore.

Figure 5: Rockford enters a passage of the gadget (a); the rock falls (b); the
passage is blocked both from left to right and right to left (c).

Both gadgets can be horizontally mirrored (in order to bring the middle
passage on the right) without affecting their properties. We can also extend
the upper and lower exits and bring them on the right of the gadget. In such a
manner we have four Node-gadgets (and four Start-gadgets) which shapes trace
out the four possible ”T” connections on a grid (Fig.6).

The gadgets can be linked together with horizontal, vertical, and bends
tunnels made of walls (Fig.7).

Now, given an orthogonal grid drawing of a planar cubic graph G = (N,V),
we can build a Boulder Dash level L that exactly traces out the shape of G using
one Start–gadget and |N | − 1 Node–gadgets linked together with horizontal,
vertical and bend tunnels. The Start–gadget can be placed in correspondence
of an arbitrary node nS of N . The size of each gadget is 19× 19, so the upper

bound for the size WL ×HL of level L is WL ≤ 19×|N |
2 and HL ≤ 19×|N |

2

5

Figure 6: Gadgets of size 19×19 rearranged to simulate four T grid connections.

Figure 7: Tunnels made with walls can be used to link the gadgets together.

6

Figure 8: The Boulder Dash level built from the orthogonal drawing of Fig.3.

7

We observe that the actions of Rockford, which is placed in the Start–gadget,
are limited to:

1. choose one of the three available exits of the Start–gadget (two stays
opened);

2. move along the tunnel to another Node–gadget (but he cannot go back);

3. enter the Node–gadget (and thus block that exit);

4. pick the diamond and choose one of the two remaining exits (the third
stays opened);

5. move along the tunnel to another Node–gadget;

6. repeat steps 2–4 until he gets blocked on a Node or collects all the Dia-
monds and reaches the Start-gadget again (where the Exit door is placed).

Furthermore:

• if Rockford re-enters an already visited Node–gadget (through the third
free exit), he gets blocked inside;

• if Rockford re-enters the Start–gadget (through one of the two free exits)
before collecting all the Diamonds, he can exit again, but he will never be
able to re-enter it and use the Exit door (and thus will never complete the
level);

Lemma 3.1. Rockford can complete level L iif the graph G has a Hamiltonian
cycle.

Proof. If the graph G has a Hamiltonian cycle, then, by construction, the same
cycle is a valid path that Rockford can follow to solve the level L: the cycle will
lead him to every node allowing him to pick all the diamonds; each node will
be traversed only once so he will always found a free entrance and a free exit.
Finally the cycle will bring him back to the Start-gadget and to the opened Exit
door.

Conversely suppose that the level L has a solution. Rockford must visit
every Node-gadget because they contains the Diamonds; furthermore for the
properties showed above, each Node–gadget can be visited only once and the
Start–gadget must be visited again only at the end (when the Exit door is
open); so Rockford must follow a cycle to solve the level and the path followed
by Rockford determines an Hamiltonian cycle in the original graph G.

Theorem 3.2. Boulder Dash is NP–hard.

8

Proof. We proved that given a 3-connected cubic planar graph G, we can build
a corresponding Builder Dash level L in polynomial (linear) time which has
polynomial size in the number of nodes of G and is solvable iif G has a Hamil-
tonian cycle. This reduction from an NP–complete problem to the problem of
determining if a level is solvable permits us to conclude that Boulder Dash is
NP -hard.

4 Conclusions

Play Boulder Dash and have fun!

References

[1] Flake and Baum. Rush hour is PSPACE-complete, or “why you should
generously tip parking lot attendants”. TCS: Theoretical Computer Science,
270, 2002.

[2] Garey, Johnson, and Tarjan. The planar hamiltonian circuit problem is
NP-complete. SICOMP: SIAM Journal on Computing, 5, 1976.

[3] M. R. Garey and D. S. Johnson. Computers and Intractability. Freeman,
San Francisco, 1979.

[4] M. Holzer and S. Schwoon. Assembling molecules in ATOMIX is hard.
Theoretical Computer Science, 303(3):447–462, 2004.

[5] Graham Kendall, Andrew J. Parkes, and Kristian Spoerer. A survey of
NP-complete puzzles. ICGA Journal, 31(1):13–34, 2008.

[6] Sokoban Is Pspace-complete, Joseph C. Culberson, and Joseph C. Culberson.
Sokoban is pspace-complete, 1997.

[7] Md. Saidur Rahman. Efficient algorithms for drawing planar graphs, 1999.

[8] Wikipedia. Boulder dash — wikipedia, the free encyclopedia, 2011. [Online;
accessed 4-December-2011].

9

