NPC Pill #2: Minimal TSP Tour is coNP-Complete

NPC Pills (NP-Complete pills) is a collection of some NP-completeness proofs that I posted on the Q&A sites and Up to my knowledge they are original and some of them are not so trivial. At present, most of them are just sketches that contain the NP-hardness reduction idea, but for some of them I wrote (or I’m going to write) a more formal paper. If you are particularly interested in one of them write me an email.

NPC Pill #2: Minimal TSP Tour is coNP-Complete

The Traveling Salesman Problem (TSP) is a well–known problem from graph theory: we are given $n$ cities and a nonnegative integer distance $d_{ij}$ between any two cities $i$ and $j$ (assume that the distances are symmetric, i.e. for all $i,j, d_{ij} = d_{ji}$). We are asked to find the shortest tour of the cities, that is a permutation $\pi$ of $[1..n]$ such that
$\sum_{i=1}^n d_{\pi(i),\pi(i+1)}$ (where $\pi(n+1) = \pi(n)$) is as small as possible. Its well-known NP-complete version is the following (TSPDECISION): If a nonnegative integer bound $B$ (the traveling salesman’s “budget”) is  given along with the distances, does there exist a tour of all the cities having total length no more than $B$?

But what about checking that a tour has effectively minimal length? We prove that the problem:

TSPMINDECISION: Given  a set of $n$ cities, the distance between all city pairs and a tour $T$, is T visiting each city exactly once and is T of minimal length?

is coNP-complete. As a secondary result we prove that given a graph $G$ and an Hamiltonian path, it is NP-complete to check if $G$ contains an Hamiltonian cycle as well.

UPADTE 2014-03-21: after publishing the proof on arXiv, it turned out that the same result was proved Papadimitriou and Steiglitz in [1] (see also [2] Section 19.9). Our proof is slightly different and it may be interesting in and of itself, so we decided not to withdraw the paper.

[1] Christos H. Papadimitriou and Kenneth Steiglitz. 1982. Combinatorial Optimization: Algorithms and Complexity. Prentice-Hall, Inc., Upper Saddle River, NJ, USA.
[2] Christos H. Papadimitriou and Kenneth Steiglitz. On the Complexity of Local Search for the Traveling Salesman Problem. SIAM J. Comput., 6(1), 76–83, 1977.

Leave a Reply

Your email address will not be published. Required fields are marked *