The decision version of the *Weapon-Target Assignment (WTA) problem* is as follows:

There are a number of weapons and a number of targets. The weapons are of type $i = 1, \ldots, m$ . There are $W_{i}$ available weapons of type $i$. Similarly, there are $j = 1, \ldots, n$ targets, each with a value of $V_{j}$ . Any of the weapons can be assigned to any target. Each weapon type has a certain probability of destroying each target, given by $p_{i,j}$ . Does there exist a weapon-target assignment such that:

$$D = \sum_{j=1}^n V_j \prod_{i=1}^m q_{i,j}^{x_{i,j}} \leq k$$

where $k$ is a given integer; $x_{i,j} = 1$ if weapon $i$ is assigned to target $j$, $x_{i,j} =0$ otherwise; $q_{i,j} = 1 – p_{i,j}$ is the* survival probability* of target $j$ when hit by weapon $i$. No more than $W_i$ weapons of type $i$ can be used, so we must add the following constraint:

$$\sum_{j=1}^n x_{i,j} \leq W_i \quad \mbox{ for } i = 1,\ldots,m$$

WTA problem is NP complete (see L. Chen, C. J. Ren, and S. Deng, “An efficient approximation for weapon-target assignment,” vol. 1, Computing, Communication, Control, and Management. ISES International Colloquium, 2008, pp. 764-767), we give an alternate hardness proof using a reduction from the NP-complete SUBSET PRODUCT problem. Continue reading →